• 제목/요약/키워드: Carbon Nanotube(CNT)

검색결과 760건 처리시간 0.026초

Electro-Micromechanical 시험법과 음향방출을 이용한 탄소 나노튜브와 나노섬유 강화 에폭시 복합재료의 비파괴적 손상 감지능 (Nondestructive Damage Sensitivity of Carbon Nanotube and Nanofiber/Epoxy Composites Using Electro-Micromechanical Technique and Acoustic Emission)

  • Kim, Dae-Sik;Park, Joung-Man;Lee, Jae-Rock;Kim, Tae-Wook
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 춘계학술발표대회 논문집
    • /
    • pp.117-120
    • /
    • 2003
  • Electro-micromechanical techniques were applied using four-probe method for carbon nanotube (CNT) or nanofiber (CNF)/epoxy composites with their content. Carbon black (CB) was used to compare with CNT and CNF. The fracture of carbon fiber was detected by nondestructive acoustic emission (AE) relating to electrical resistivity for double-matrix composites test. Sensing for fiber tension was performed by electro-pullout test under uniform cyclic strain. The sensitivity for fiber damage such as fiber fracture and fiber tension was the highest for CNT/epoxy composites, and in CB case they were the lowest compared with CNT and CNF. Reinforcing effect of CNT obtained from apparent modulus measurement was the highest in the same content. The results obtained from sensing fiber damage were correlated with the morphological observation of nano-scale structure using FE-SEM. The information on fiber damage and matrix deformation and reinforcing effect of carbon nanocomposites could be obtained from electrical resistivity measurement as a new concept of nondestructive evaluation.

  • PDF

Performance of carbon nanotube-coated steel slag for high concentrations of phosphorus from pig manure

  • Kang, Kyeong Hwan;Kim, Junghyeon;Jeon, Hyeonjin;Kim, Kyoungwoo;Byun, Imgyu
    • Membrane and Water Treatment
    • /
    • 제11권1호
    • /
    • pp.59-68
    • /
    • 2020
  • The study objective was to evaluate the enhanced removal of high concentrations of phosphorus from synthetic wastewater (solely phosphorus-containing) and real wastewater (pig manure) by using carbon nanotube (CNT)-coated steel slag. Generally, phosphorus removal by steel slag is attributed to Ca2+ eluted from the slag. However, in this study, CNT was used to control the excess release of Ca2+ from steel slag and increase the phosphorus removal. The phosphorus removal rate by the uncoated steel slag was lower than that of the CNT-coated steel slag, even though the Ca2+ concentrations were higher in the solution containing the uncoated steel slag. Therefore, the phosphorus removal could be attributed to both precipitation with Ca2+ eluted from steel slag in aqueous solution and adsorption onto the surface of the CNT-coated steel slag. Furthermore, the protons released from the CNT surface by exchanging with divalent cations acted to reduce the pH increase of the solution, which is attributed to the OH- eluted from the steel slag. The adsorption isotherm and kinetics of the CNT-coated steel slags followed the Freundlich isotherm and pseudo-second-order model, respectively. The maximum adsorption capacity of the uncoated and CNT-coated steel slags was 6.127 and 9.268 mg P g-1 slag, respectively. In addition, phosphorus from pig manure was more effectively removed by the CNT-coated steel slag than by the uncoated slag. Over 24 hours, the PO4-P removal in pig manure was 12.3% higher by the CNT-coated slag. This CNT-coated steel slag can be used to remove both phosphorus and metals and has potential applications in high phosphorus-containing wastewater like pig manure.

상온감지 가능한 탄소나노튜브 방적사 기반의 수소 감지 센서 (Room Temperature Hydrogen Gas Sensor Based on Carbon Nanotube Yarn)

  • 김재건;이준엽;공성호;정대웅
    • 센서학회지
    • /
    • 제27권2호
    • /
    • pp.132-136
    • /
    • 2018
  • We report the development of a room-temperature hydrogen ($H_2$) gas sensor based on carbon nanotubes (CNT) yarn. To detect $H_2$ gas in room temperature, a highly ordered CNT yarn was placed on a substrate from a spin-capable CNT forest, followed by the deposition of a platinum (Pt) layer on surface of the CNT yarn. To examine the effect of the Pt-layer on the response of the CNT sensor, a comparative sensing performance was characterized on both the Pt deposited and non-deposited CNT yarn at room temperature. The Pt-CNT yarn yielded high response, whereas the non-deposited CNT yarn showed negligible response for $H_2$ detection at room temperature. Pt is a reliable and efficient catalyst that can substantially improve the detection of $H_2$ gas by chemical sensitization via a "spillover" effect. It can be efficiently utilized to increase the sensitivity and selectivity as well as to obtain fast response and recovery times.

Influence of the microstructure on effective mechanical properties of carbon nanotube composites

  • Drucker, Sven;Wilmers, Jana;Bargmann, Swantje
    • Coupled systems mechanics
    • /
    • 제6권1호
    • /
    • pp.1-15
    • /
    • 2017
  • Despite the exceptional mechanical properties of individual carbon nanotubes (CNTs), the effective properties of CNT-reinforced composites remain below expectations. The composite's microstructure has been identified as a key factor in explaining this discrepancy. In this contribution, a method for generating representative volume elements of aligned CNT sheets is presented. The model captures material characteristics such as random waviness and entanglement of individual nanotubes. Thus it allows studying microstructural effects on the composite's effective properties. Simulations investigating the strengthening effect of the application of a pre-stretch on the CNTs are carried out and found to be in very good agreement with experimental values. They highlight the importance of the nanotube's waviness and entanglement for the mechanical behavior of the composite. The presented representative volume elements are the first to accurately capture the waviness and entanglement of CNT sheets for realistically high volume fractions.

전기활성 고분자 전극용 탄소입자 강화고무의 전기적 및 기계적 특성 (Electrical and Mechanical Properties of Carbon Particle Reinforced Rubber for Electro-Active Polymer Electrode)

  • 이준만;류상렬;이동주
    • 대한기계학회논문집A
    • /
    • 제37권12호
    • /
    • pp.1465-1471
    • /
    • 2013
  • 다중벽 탄소나노튜브 (CNT), 카본블랙 (CB) 그리고 희석제의 함유량에 따른 상온경화형 실리콘 고무복합재료의 전기적 및 기계적 특성에 대해 연구하였다. 기지 내에 CNT 및 CB의 분산을 향상시키기 위해서 희석제를 사용하였다. CNT 강화 복합재료의 전기적 및 기계적 특성은 같은 함유량의 CB이 강화된 복합재료에 비해 향상되었다. 희석제의 함유량이 80phr일 때, 복합재료의 전기저항은 CNT 함유량 증가에 따라 크게 감소하였고, CNT 2.5phr에서 접촉점 포화현상을 보였다. 희석제 함유량 증가에 따라 전도성 입자들의 분산은 향상되었지만, CB의 무게비 감소로 임계 CB 함유량은 증가하였다. 희석제의 함유량 증가로 많은 CNT와 CB의 혼합이 가능하므로 유연하면서 전기적 특성이 우수한 전극의 제작이 가능하다고 판단된다.

Improvement of the Field Emission Stability of Carbon Nanotube Paste Emitter by Post-treatments

  • Choi, Young-Chul;Jeong, Mun-Seok
    • Carbon letters
    • /
    • 제10권3호
    • /
    • pp.234-238
    • /
    • 2009
  • The field emitters were fabricated by screen-printing of carbon nanotube paste, and their emission stabilities were evaluated. It was found that the emission stability measured in a sealed device is much higher than that measured in a vacuum chamber in spite of similar pressure. This was because oxygen gas was scarcely remained in the sealed device, while the gas is continuously supplied into the vacuum chamber during the stability measurement. It was found that the plasma treatment etched the protruded CNTs, resulting in the uniform height of CNT tips. As a result, the stability was increased remarkably. It was also found that the stability of CNT paste emitter was improved by electrical aging and that the optimum condition for the aging was varied with the size of emitter.

전기 분사 증착 방식을 이용한 탄소 나노 튜브 박막의 트라이볼로지적 특성에 관한 연구 (Tribological Properties of Carbon Nanotube Thin Films by using Electrodynamic Spraying Method)

  • 김창래;김대은;김해진
    • Tribology and Lubricants
    • /
    • 제34권6호
    • /
    • pp.313-317
    • /
    • 2018
  • Carbon-based coatings, including carbon nanotubes (CNTs), graphene, and buckyball ($C_{60}$), receive much interest because of their outstanding mechanical and electrical properties for a wide range of electromechanical component-based applications. Previous experimental results demonstrate that these carbon-based coatings are promising solid lubricants because of their superior tribological properties, and thus help prolong the lifetime of silicon-based applications. In this study, CNT coatings are deposited on a bare silicon (100) substrate by electrodynamic spraying under different deposition conditions. During the coating deposition, the applied voltage, CNT concentration of the solution, distance between the injecting nozzle and the substrate and diameter of the injecting nozzle are optimized to control the thickness and surface roughness of the CNT coatings. The surface morphology and thickness of the coatings are characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. The friction and wear properties of the coatings are investigated by using a pin-on-reciprocating-type tribotester under various experimental conditions. The friction coefficient of the CNT coating is as low as 0.15 under high normal loads. The overall results reveal that CNT coatings deposited by electrodynamic spraying provide relatively uniform with superior lubrication performance.

생체모방 액츄에이터용 다중탄소나노튜브/고분자 나노복합체 (Tailored biomimetic actuators made with multiwalled carbon nanotube loaded ionomeric nanocomposites)

  • 이세종;이득용;이명현;김배연
    • 한국결정성장학회지
    • /
    • 제15권3호
    • /
    • pp.108-113
    • /
    • 2005
  • 부드럽지만 큰 변위를 발생시키는 생체모방 액츄에이터는 관심의 대상이 되어왔다. 특히, 듀폰사의 나피온 고분자는 작은 전기장하에서도 큰 변위를 나타내었다. 전기기계적 특성을 향상시키기 위하여 탄소나노튜브/고분자 나노복합체를 제조하였다. 다중 탄소나노튜브/나피온 나노복합체를 캐스팅법으로 제조하고 탄소나노튜브 첨가량에$(0{\sim}7wt%)$ 따른 나노복합체의 전기기계적 특성을 조사하였다. 탄소나노튜브가 첨가된 나노복합체는 탄소나노튜브가 없는 고분자 액츄에이터와 비교하여 우수한 탄성계수와 응력이 관찰되었다. 다중 탄소나노튜브의 첨가는 고기능성 생체모방 액츄에이터 특성을 증진시키는데 효과적이었다.

콜타르피치를 이용한 Invar 합금 위 탄소나노튜브의 합성 (Carbon Nanotube Growth on Invar Alloy using Coal Tar Pitch)

  • 김준우;정구환
    • 한국표면공학회지
    • /
    • 제50권6호
    • /
    • pp.516-522
    • /
    • 2017
  • We report the growth of carbon nanotubes (CNT) on Invar-42 plates using coal tar pitch (CTP) by chemical vapor deposition (CVD) method. The solid phase CTP is used as an inexpensive carbon source since it produces a bunch of hydrocarbon gases such as $CH_4$ and other $C_xH_v$ by thermal decomposition over $450^{\circ}C$. The Invar-42 is a representative Ni-based ferrous alloy and can be used repetitively as a substrate for CNT growth because Ni and Fe are used as very active catalytic elements. We changed mixing ratio of carrier gases, argon and hydrogen, and temperature of growth region. It was found that the optimum gas ratio and temperature for high quality CNT growth are $Ar:H_2=400:400$ sccm and $1000^{\circ}C$, respectively. In addition, the carbon nanoball (CNB) was also obtained by just changing the mixing ratio to $Ar:H_2=100:600$ sccm. Finally, CTP can be employed as a versatile carbon source to produce various carbon-based nanomaterials, such as CNT and CNB.

탄소나노튜브 박막 제조를 위한 분무공정에서의 증착 두께 분포 예측 모델 개발 (Development of Numerical Model for Predicting Deposition Thickness Distribution during Spray Process for Carbon Nanotube Thin Films)

  • 최두순;김덕종;장동환
    • 대한기계학회논문집B
    • /
    • 제35권9호
    • /
    • pp.969-974
    • /
    • 2011
  • 탄소나노튜브(CNT)는 원통형의 탄소나노 구조물로서, 뛰어난 전도특성과 열전도율을 갖는다. 이러한 특성을 이용한 다양한 응용 분야의 하나로 CNT 를 박막형태의 그물망으로 제작하여 전도성 필름으로 응용하는 방안이 연구되고 있다. 이러한 CNT 의 박막 제조 방법 중, 분무 코팅 방식은 대면적 박막 제조에 널리 사용되나, 박막 두께를 균일하게 제작하는 점에 어려움이 있다. 이러한 문제점을 해결하려면 분무시의 공정조건이 증착 두께 분포에 미치는 효과를 잘 분석해야 한다. 본 연구에서는 분무 공정에서의 증착두께분포를 예측하기 위한 수치해석 모델을 개발하였다. 또한, 개발된 모델을 이용하여 여러가지 노즐 경로에 따른 증착 두께 분포를 분석하였다.