Browse > Article
http://dx.doi.org/10.12989/csm.2017.6.1.001

Influence of the microstructure on effective mechanical properties of carbon nanotube composites  

Drucker, Sven (Institute of Polymer Composites, Hamburg University of Technology)
Wilmers, Jana (Chair of Solid Mechanics, University of Wuppertal)
Bargmann, Swantje (Chair of Solid Mechanics, University of Wuppertal)
Publication Information
Coupled systems mechanics / v.6, no.1, 2017 , pp. 1-15 More about this Journal
Abstract
Despite the exceptional mechanical properties of individual carbon nanotubes (CNTs), the effective properties of CNT-reinforced composites remain below expectations. The composite's microstructure has been identified as a key factor in explaining this discrepancy. In this contribution, a method for generating representative volume elements of aligned CNT sheets is presented. The model captures material characteristics such as random waviness and entanglement of individual nanotubes. Thus it allows studying microstructural effects on the composite's effective properties. Simulations investigating the strengthening effect of the application of a pre-stretch on the CNTs are carried out and found to be in very good agreement with experimental values. They highlight the importance of the nanotube's waviness and entanglement for the mechanical behavior of the composite. The presented representative volume elements are the first to accurately capture the waviness and entanglement of CNT sheets for realistically high volume fractions.
Keywords
carbon nanotubes; CNT reinforced composites; RVE generation; representative volume element;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Goh, P.S., Ismail, A.F. and Ng, B.C. (2014), "Directional alignment of carbon nanotubes in polymer matrices: Contemporary approaches and future advances", Compos. Part A, 56, 103-126.   DOI
2 Govindjee, S. and Sackman, J.L. (1999), "On the use of continuum mechanics to estimate the properties of nanotubes", Sol. State Commun., 110(4), 227-230.   DOI
3 Grady, B.P. (2011), Carbon Nanotube-Polymer Composites: Manufacture, Properties, and Applications, John Wiley & Sons, New York, U.S.A.
4 Herasati, S. and Zhang, L. (2014), "A new method for characterizing and modeling the waviness and alignment of carbon nanotubes in composites", Compos. Sci. Technol., 100, 136-142.   DOI
5 Hernandez, E., Goze, C., Bernier, P. and Rubio, A. (1998), "Elastic properties of C and $B_{x}C_{y}N_{z}$ composite nanotubes", Phys. Rev. Lett., 80(20), 4502.   DOI
6 Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nat., 354(6348), 56-58.   DOI
7 Inoue, Y., Kakihata, K., Hirono, Y., Horie, T., Ishida, A. and Mimura, H. (2008), "One-step grown aligned bulk carbon nanotubes by chloride mediated chemical vapor deposition", Appl. Phys. Lett., 92(21), 213113.   DOI
8 Inoue, Y., Suzuki, Y., Minami, Y., Muramatsu, J., Shimamura, Y., Suzuki, K., Ghemes, A., Okada, M., Sakakibara, S., Mimura, H. and Naito, K. (2011), "Anisotropic carbon nanotube papers fabricated from multiwalled carbon nanotube webs", Carbon, 49(7), 2437-2443.   DOI
9 Jin, Y. and Yuan, F.G. (2003), "Simulation of elastic properties of single-walled carbon nanotubes", Compos. Sci. Technol., 63(11), 1507-1515.   DOI
10 Kassem, G. (2010), "Micromechanical material models for polymer composites through advanced numerical simulation techniques", Ph.D. Dissertation.
11 Kouznetsova, V.G., Geers, M.G.D. and Brekelmans, W.A.M. (2010), "Computational homogenization for non-linear heterogeneous solids", Multisc. Model. Sol. Mech.: Comput. Appro., 1-42.
12 Li, C. and Chou, T.W. (2003), "A structural mechanics approach for the analysis of carbon nanotubes", J. Sol. Struct., 40(10), 2487-2499.   DOI
13 Lu, J.P. (1997), "Elastic properties of carbon nanotubes and nanoropes", Phys. Rev. Lett., 79(7), 1297.   DOI
14 Mecklenburg, M., Mizushima, D., Ohtake, N., Bauhofer, W., Fiedler, B. and Schulte, K. (2015), "On the manufacturing and electrical and mechanical properties of ultra-high wt.% fraction aligned MWCNT and randomly oriented CNT epoxy composites", Carbon, 91, 275-290.   DOI
15 Nam, T.H., Goto, K., Nakayama, H., Oshima, K., Premalal, V., Shimamura, Y, Inoue, Y., Naito, K. and Kobayashi, S. (2014), "Effects of stretching on mechanical properties of aligned multi-walled carbonnanotube/epoxy composites", Compos. Part A, 64, 197-202.
16 Nam, T.H., Goto, K., Yamaguchi, Y., Premalal, E., Shimamura, Y., Inoue, Y., Naito, K. and Ogihara, S. (2015), "Effects of CNT diameter on mechanical properties of aligned CNT sheets and composites", Compos. Part A, 76, 289-298.   DOI
17 Schneider, K., Klusemann, B. and Bargmann, S. (2016), "Automatic three-dimensional geometry and mesh generation of periodic representative volume elements for matrix-inclusion composites", Adv. Eng. Soft., 99, 177-188.   DOI
18 Paunikar, S. and Kumar, S. (2014), "Effect of CNT waviness on the effective mechanical properties of long and short CNT reinforced composites", Comput. Mater. Sci., 95, 21-28.   DOI
19 Ru, C.Q. (2000), "Effective bending stiffness of carbon nanotubes", Phys. Rev. B, 62(15), 9973.   DOI
20 Salvetat, J.P., Kulik, A.J., Bonard, J.M., Briggs, G.A.D., Stockli, T., Metenier, K., Bonnamy, S., Beguin, F., Burnham, N.A. and Forro, L. (1999), "Elastic modulus of ordered and disordered multiwalled carbon nanotubes", Adv. Mater., 11(2), 161-165.   DOI
21 Schneider, K., Klusemann, B. and Bargmann, S. (2017), "Fully periodic RVEs for technological relevant composites: Not worth the effort!", J. Mech. Mater. Struct., In press.
22 Shady, E. and Gowayed, Y. (2010), "Effect of nanotube geometry on the elastic properties of nanocomposites", Compos. Sci. Technol., 70(10), 1476-1481.   DOI
23 Shi, D.L., Feng, X.Q., Huang, Y.Y., Hwang, K.C. and Gao, H. (2004) "The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites", J. Eng. Mater. Technol., 126, 250-257.   DOI
24 Stein, I.Y., Lewis, D.J. and Wardle, B.L. (2015), "Aligned carbon nanotube array stiffness from stochastic three-dimensional morphology", Nanos., 7(46), 19426-19431.   DOI
25 Thostenson, E.T., Li, C. and Chou, T.W. (2005), "Nanocomposites in context", Compos. Sci. Technol., 65(3), 491-516.   DOI
26 Tsuda, T., Ogasawara, T., Moon, S.Y., Nakamoto, K., Takeda, N., Shimamura, Y. and Inoue, Y. (2014), "Three dimensional orientation angle distribution counting and calculation for the mechanical properties of aligned carbon nanotube/epoxy composites", Compos. Part A, 65, 1-9.
27 Van Lier, G., Van Alsenoy, C., Van Doren, V. and Geerlings, P. (2000), "Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene", Chem. Phys. Lett., 326(1), 181-185.   DOI
28 Wernik, J.M. and Meguid, S.A. (2010), "Atomistic-based continuum modeling of the nonlinear behavior of carbon nanotubes", Acta Mech., 212(1), 167-179.   DOI
29 Wong, E.W., Sheehan, P.E. and Lieber, C.M. (1997), "Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes", Sci., 277(5334), 1971-1975.   DOI
30 Yakobson, B.I. and Smalley, R.E. (1997), "Fullerene nanotubes: $C_{1,000,000}$ and beyond", Am. Sci., 85(4), 324-337.
31 Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F. and Ruoff, R.S. (2000), "Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load", Sci., 287(5453), 637-640.   DOI
32 Yuan, Z. and Fish, J. (2008), "Computational homogenization in practice", J. Numer. Meth. Eng., 73(3), 361-380.   DOI
33 Cumings, J. and Zettl, A. (2000), "Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes", Sci., 289(5479), 602-604.   DOI
34 Andrews, R. and Weisenberger, M.C. (2004), "Carbon nanotube polymer composites", Curr. Opin. Sol. State Mater. Sci., 8(1), 31-37.   DOI
35 Bradshaw, R.D., Fisher, F.T. and Brinson, L.C. (2003), "Fiber waviness in nanotube-reinforced polymer composites-II: Modeling via numerical approximation of the dilute strain concentration tensor", Compos. Sci. Technol., 63(11), 1705-1722.   DOI
36 Cheng, H.C., Liu, Y.L., Hsu, Y.C. and Chen, W.H. (2009), "Atomistic-continuum modeling for mechanical properties of single-walled carbon nanotubes", J. Sol. Struct., 46(7), 1695-1704.   DOI
37 Dastgerdi, J.N., Marquis, G. and Salimi, M. (2013), "The effect of nanotubes waviness on mechanical properties of CNT/SMP composites", Compos. Sci. Technol., 86, 164-169.   DOI
38 Demczyk, B.G., Wang, Y.M., Cumings, J., Hetman, M., Han, W., Zettl, A. and Ritchie, R.O. (2002), "Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes", Mater. Sci. Eng.: A, 334(1), 173-178.   DOI
39 Dickrell, P.L., Sinnott, S.B., Hahn, D.W., Raravikar, N.R., Schadler, L.S., Ajayan, P.M. and Sawyer, W.G. (2005), "Frictional anisotropy of oriented carbon nanotube surfaces", Tribol. Lett., 18(1), 59-62.   DOI
40 Fisher, F.T., Bradshaw, R.D. and Brinson, L.C. (2002), "Effects of nanotube waviness on the modulus of nanotube-reinforced polymers", Appl. Phys. Lett., 80(24), 4647-4649.   DOI
41 Fisher, F.T., Bradshaw, R.D. and Brinson, L.C. (2003), "Fiber waviness in nanotube-reinforced polymer composites-I: Modulus predictions using effective nanotube properties", Compos. Sci. Technol., 63(11), 1689-1703.   DOI
42 Ginga, N.J., Chen, W. and Sitaraman, S.K. (2014), "Waviness reduces effective modulus of carbon nanotube forests by several orders of magnitude", Carbon, 66, 57-66.   DOI