• 제목/요약/키워드: Carbon Fibers

검색결과 836건 처리시간 0.034초

Effect of Atmospheric Plasma Treatments on Mechanical Properties of VGCF/Epoxy

  • Khuyen, Nguyen Quang;Kim, Jin-Bong;Kim, Byung-Sun;Lee, Soo
    • Advanced Composite Materials
    • /
    • 제17권2호
    • /
    • pp.167-175
    • /
    • 2008
  • Vapor grown carbon fibers (VGCF) were treated with atmospheric plasma enhancing the surface area in order to improve the bonding to the matrix in epoxy composites. The changes in the mechanical properties of VGCF/epoxy nanocompostes, such as tensile modulus and tensile strength were investigated in this study. VGCF with and without atmospheric plasma treatment for surface modification were used in this investigation. The interdependence of these properties on the VGCF contents and interfacial bonding between VGCF/epoxy matrix were discussed. The mechanical properties of atmospheric plasma treated (APT) VGCF/epoxy were compared with raw VGCF/epoxy. The tensile strength of APT VGCF/epoxy nanocomposites showed higher value than that of raw VGCF. The tensile strength was increased with atmospheric plasma treatment, due to better adhesion at VGCF/epoxy interface. The tensile modulus of raw VGCF and APT VGCF/epoxy matrix were of the similar value. The dispersion of the VGCF was investigated by scanning electron microscopy (SEM), SEM micrographs showed an excellent dispersion of VGCF in epoxy matrix by ultrasonic method.

하이브리드 섬유강화 복합재료 리바의 기계적 특성 (Mechanical Characteristics of Hybrid Fiber Reinforced Composite Rebar)

  • 한길영;안동규;이동기
    • 한국해양공학회지
    • /
    • 제19권1호
    • /
    • pp.57-63
    • /
    • 2005
  • The objective of this research is to investigate the mechanical characteristics of the hybrid fiber reinforced composite rebar, which is manufactured from a braidtrusion process. Braidtrusion is a direct composite fabrication technique, utilizing in-line brading and the pultrusion process. hz order to obtain the mechanical behavior of the glass fiber, carbon fiber, and kevlar fiber, the tensile tests are carried out. The results of the fibers are compared with that of steel. Hybrid rebar specimens with various diameters, ranging from model size (3 mm) to full-scale size (9.5 mm), and various cross sections, such as solid and hollow shape, have been manufactured from the braidtrusion process. The tensile and bending tests for the case of the hybrid rebar, the conventional GFRP rebar, and the steel bar have been carried out. The results of the experiments show that the hybrid rebar is superior to the conventional GFRP rebar and the steel bar, from the viewpoint of tensile and bending characteristics.

마이크로웨이브 플라즈마를 이용한 탄화공정 및 PAN fiber의 강도 향상에 관한 연구 (A Study on the Carbonization and Strengthening of PAN Fiber by Microwave Plasma)

  • 최지성;주정훈;이헌수
    • 한국표면공학회지
    • /
    • 제45권2호
    • /
    • pp.89-94
    • /
    • 2012
  • A study to replace a high temperature thermal carbonization process with microwave plasma process is carried for PAN fiber as a starting material. Near atmospheric pressure microwave plasma (1 Torr~45 Torr) was used to control to get the fiber temperature up to $1,000^{\circ}C$. Even argon is an inert gas, its plasma state include high internal energy particles; ion (15.76 eV) and metastable (11.52 eV). They are very effective to lower the necessary thermal temperature for carbonization of PAN fiber and the resultant thermal budget. The carbonization process was confirmed by both EDS (energy dispersive spectroscopy) of plasma treated fibers and OES (optical emission spectroscopy) during processing step as a real time monitoring tool. The same trend of decreasing oxygen content was observed in both diagnostic methods.

Low strength concrete members externally confined with FRP sheets

  • Ilki, Alper;Kumbasar, Nahit;Koc, Volkan
    • Structural Engineering and Mechanics
    • /
    • 제18권2호
    • /
    • pp.167-194
    • /
    • 2004
  • In this paper axial loading tests on low strength concrete members, which were confined with various thickness of carbon fiber reinforced polymer (CFRP) composite sheets are described. Totally 46 specimens with circular, square and rectangular cross-sections with unconfined concrete compressive strengths between 6 and 10 MPa were included in the test program. During the tests, a photogrammetrical deformation measurement technique was also used, as well as conventional measurement techniques. The contribution of external confinement with CFRP composite sheets to the compressive behavior of the specimens with low strength concrete is evaluated quantitatively, in terms of strength, longitudinal and lateral deformability and energy dissipation. The effects of width/depth ratios and the corner radius of the specimens with rectangular cross-section on the axial behavior were also examined. It was seen that the effectiveness of the external confinement with CFRP composite sheets is much more pronounced, when the unconfined concrete compressive strength is relatively lower. It was also found that the available analytical expressions proposed for normal or high strength concrete confined by CFRP sheets could not predict the strength and deformability of CFRP confined low strength concrete accurately. New expressions are proposed for the compressive strength and the ultimate axial strain of CFRP confined low strength concrete.

Critical Influence of Rivet Head Height on Corrosion Performance of CFRP/Aluminum Self-Piercing Riveted Joints

  • Karim, Md Abdul;Bae, Jin-Hee;Kam, Dong-Hyuck;Kim, Cheolhee;Park, Yeong-Do
    • Corrosion Science and Technology
    • /
    • 제18권3호
    • /
    • pp.92-101
    • /
    • 2019
  • This study investigates how rivet head height affects the corrosion performance of carbon fiber reinforced plastic (CFRP) to aluminum alloy self-piercing riveted joints. Specimens with two different head heights were prepared. A rivet head protruding out of the top CFRP laminate forms the proud head height while a rivet head penetrating into the top CFRP generates the flush head height. The salt spray test evaluated corrosion performance. The flush head joints suffered from severe corrosion on the rivet head. Thus, the tensile shear load of flush head joints was substantially reduced. Electrochemical corrosion tests investigated the corrosion mechanisms. The deeper indentation of the flush head height damaged the CFRP around the rivet head. The exposure of damaged fibers from the matrix increased the cathodic potential of local CFRP. The increased potential of damaged CFRP accelerated the galvanic corrosion of the rivet head. After the rivet head coating material corroded, a strong galvanic couple was formed between the rivet head base metal (boron steel) and the damaged CFRP, further accelerating the flush rivet head corrosion. The results of this study suggest that rivet head flushness should be avoided to enhance the corrosion performance of CFRP to aluminum alloy self-piercing riveted joints.

Enhancing anaerobic digestion of vegetable waste and cellulose by bioaugmentation with rumen culture

  • Jo, Yeadam;Hwang, Kwanghyun;Lee, Changsoo
    • Membrane and Water Treatment
    • /
    • 제10권3호
    • /
    • pp.213-221
    • /
    • 2019
  • Anaerobic digestion (AD) has been widely used to valorize food waste (FW) because of its ability to convert organic carbon into $CH_4$ and $CO_2$. Korean FW has a high content of fruits and vegetables, and efficient hydrolysis of less biodegradable fibers is critical for its complete stabilization by AD. This study examined the digestates from different anaerobic digesters, namely Rs, Rr, and Rm, as the inocula for the AD of vegetable waste (VW) and cellulose (CL): Rs inoculated with anaerobic sludge from an AD plant, Rr inoculated with rumen fluid, and Rm inoculated with anaerobic sludge and augmented with rumen fluid. A total of six conditions ($3\;inocula{\times}2\;substrates$) were tested in serial subcultures. Biogas yield was higher in the runs inoculated with Rm than in the other runs for both VW (up to 1.10 L/g VS added) and CL (up to 1.05 L/g VS added), and so was biogas production rate. The inocula had different microbial community structures, and both substrate type and inoculum source had a significant effect on the formation and development of microbial community structures in the subcultures. The overall results suggest that the bioaugmentation with rumen microbial consortium has good potential to enhance the anaerobic biodegradability of VW, and thereby can help more efficiently digest high fiber-content Korean FW.

전기방사법을 이용한 PCL/MWCNTs 나노섬유 제조 (Fabrication of PCL/MWCNTs Nanofiber by Electrospinning)

  • 최정미;장현철;현재영;석중현
    • 대한금속재료학회지
    • /
    • 제50권10호
    • /
    • pp.763-768
    • /
    • 2012
  • The uniform and highly smooth nanofibers of biocompatible poly(${\varepsilon}$-caprolactone) (PCL) composited with different contents of multiwalled carbon nanotubes (MWCNTs) were successfully prepared by electrospinning. Experimental parameters were MWCNTs addition to a PCL solution and applied voltages. The topographical features of the composite nanofibers were characterized by scanning electron microscopy and its electrical properties were measured by a four-point probe method. The surface resistance gradually decreased with an increasing content of MWCNTs in PCL fibers because of the excellent electrical conductivity of MWCNTs. The nanofiber diameter could be regulated by varying the solution viscosity and voltages. Our results establish that this kind of electrospinning PCL/MWCNTs nanofibers with the control of fiber diameter and electrical conductivity may be a promising candidate for the application of scaffolds in tissue engineering.

Evaluation of cryogenic tensile properties of composite materials fabricated by fused deposition modeling 3D printer

  • Kang, Singil;Cha, Hojun;Ryu, Seungcheol;Kim, Kiwhan;Jeon, Seungmin;Lee, Jaesun;Kim, Seokho
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제24권1호
    • /
    • pp.8-12
    • /
    • 2022
  • Recently, research on applying composite materials to various industrial fields is being actively conducted. In particular, composite materials fabricated by Fused Deposition Modeling 3D printers have more advantages than existing materials as they have fewer restrictions on manufacturing shape, reduce the time required, weight. With these advantages, it is possible to consider utilizing composite materials in cryogenic environments such as the application of liquid oxygen and liquid hydrogen, which are mainly used in an aerospace and mobility. However, FDM composite materials are not verified in cryogenic environments less than 150K. This study evaluates the characteristics of composite materials such as tensile strength and strain using a UTM (Universal Testing Machine). The specimen is immersed in liquid nitrogen (77 K) to cool down during the test. The specimen is fabricated using 3D print, and can be manufactured by stacking reinforced fibers such as carbon fiber, fiber glass, and aramid fiber (Kevlar) with base material (Onyx). For the experimental method and specimen shape, international standards ASTM D638 and ASTM D3039 for tensile testing of composite materials were referenced.

Composite components damage tracking and dynamic structural behaviour with AI algorithm

  • Chen, Z.Y.;Peng, Sheng-Hsiang;Meng, Yahui;Wang, Ruei-Yuan;Fu, Qiuli;Chen, Timothy
    • Steel and Composite Structures
    • /
    • 제42권2호
    • /
    • pp.151-159
    • /
    • 2022
  • This study discusses a hypothetical method for tracking the propagation damage of Carbon Reinforced Fiber Plastic (CRFP) components underneath vibration fatigue. The High Cycle Fatigue (HCF) behavior of composite materials was generally not as severe as this of admixture alloys. Each fissure initiation in metal alloys may quickly lead to the opposite. The HCF behavior of composite materials is usually an extended state of continuous degradation between resin and fibers. The increase is that any layer-to-layer contact conditions during delamination opening will cause a dynamic complex response, which may be non-linear and dependent on temperature. Usually resulted from major deformations, it could be properly surveyed by a non-contact investigation system. Here, this article discusses the scanning laser application of that vibrometer to track the propagation damage of CRFP components underneath fatigue vibration loading. Thus, the study purpose is to demonstrate that the investigation method can implement systematically a series of hypothetical means and dynamic characteristics. The application of the relaxation method based on numerical simulation in the Artificial Intelligence (AI) Evolved Bat (EB) strategy to reduce the dynamic response is proved by numerical simulation. Thermal imaging cameras are also measurement parts of the chain and provide information in qualitative about the temperature location of the evolution and hot spots of damage.

3D 프린팅 복합소재의 가공에서 가공 조건 선정을 위한 머신러닝 개발에 관한 연구 (Development of Machine Learning Method for Selection of Machining Conditions in Machining of 3D Printed Composite Material)

  • 김민재;김동현;이춘만
    • 한국기계가공학회지
    • /
    • 제21권2호
    • /
    • pp.137-143
    • /
    • 2022
  • Composite materials, being light-weight and of high mechanical strength, are increasingly used in various industries such as the aerospace, automobile, sporting-goods manufacturing, and ship-building industries. Recently, manufacturing of composite materials using 3D printers has increased. 3D-printed composite materials are made in free-form and adapted for end-use by adjusting the fiber content and orientation. However, research on the machining of 3D printed composite materials is limited. The aim of this study is to develop a machine learning method to select machining conditions for machining of 3D-printed composite materials. The composite material was composed of Onyx and carbon fibers and stacked sequentially. The experiments were performed using the following machining conditions: spindle speed, feed rate, depth of cut, and machining direction. Cutting forces of the different machining conditions were measured by milling the composite materials. PCA, a method of machine learning, was developed to select the machining conditions and will be used in subsequent experiments under various machining conditions.