• Title/Summary/Keyword: Carbon Fiber Reinforced Plastic Composite

Search Result 165, Processing Time 0.026 seconds

Optimum Design of the Laminated Composite Sandwich Plate Structure of Honeycomb Core considering Vibration Characteristics (복합적층 하니콤 코어형 샌드위치 판무구조물의 진동특성을 고려한 최적설계)

  • Seo, J.;Hong, D. K.;Ahn, C. W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.710-715
    • /
    • 1997
  • This paper deals with the analysis of the optimum value of honeycomb core considering variable design parameter. As thickness and height of core rises in design parameter, natural frequency of laminated composite plate increases. The angle-phy has the maximum value when the plate of honeycomb core join to opposite direction. This paper shows that the natural frequency of CFRP was higher than that of GFRP and mode shapes were various at angle-ply.

  • PDF

The Recovery of Carbon Fiber from Carbon Fiber Reinforced Epoxy Composites Applied to Railway Vehicles (철도차량용 폐 복합소재로부터 탄소섬유 회수)

  • Lee, Suk-Ho;Kim, Jung-Seok;Lee, Cheul-Kyu;Kim, Yong-Ki;Ju, Chang-Sik
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.1059-1066
    • /
    • 2009
  • Recently, the amount of thermosetting plastic wastes has increased with the production of reinforced plastic composites and causes serious environmental problems. The epoxy resins, one of the versatile thermosetting plastics with excellent properties, cannot be melted down and remolded as what is done in the thermoplastic industry. In this research, a series of experiments that decompose epoxy resin and recover carbon fibers from carbon fiber reinforced epoxy composites applied to railway vehicles was performed. We experimentally examined various decomposition processes and compared their decomposition efficiencies and mechanical property of recovered carbon fibers. For the prevention of tangle of recovered carbon fibers, each composites specimen was fixed with a Teflon supporter and no mechanical mixing was applied. Decomposition products were analyzed by scanning electron microscope (SEM), gas chromatography mass spectrometer (GC-MS), and universal testing machine (UTM). Carbon fibers could be completely recovered from decomposition process using nitric acid aqueous solution, liquid-phase thermal cracking and pyrolysis. The tensile strength losses of the recovered carbon fibers were less than 4%.

Eco-friendly Recycling of Carbon Fiber Reinforced Plastics (탄소섬유강화 복합소재의 친환경 재활용 기술)

  • Yu, Ayeong;Bang, Sangpil;Goh, Munju
    • Prospectives of Industrial Chemistry
    • /
    • v.24 no.2
    • /
    • pp.31-37
    • /
    • 2021
  • 일반적으로 cross-link된 열경화성 에폭시수지는 유기용매에 용해되지 않고 열에 용융되지 않는 특성이 있다. 따라서 에폭시수지가 사용된 물질, 특히 탄소섬유강화플라스틱(carbon fiber reinforced plastic, CFRP)은 재활용이 어렵고, 사용 후 폐기물 처리에 막대한 비용이 소비되고 있다. 본 원고는 열경화성 에폭시수지 응용물 중 CFRP의 재활용을 중심으로 한 친환경적 재활용 기술에 관하여 정리하였다. 특히, CFRP의 구성요소인 탄소섬유(CF)와 기지재인 에폭시수지를 모두 재활용 할 수 있는 화학적 방법에 관하여 보고한다. 더 나아가 열경화성 에폭시수지의 화학적 분해물의 재이용기술에 관한 예를 소개한다.

Effects of face-sheet materials on the flexural behavior of aluminum foam sandwich

  • Xiao, Wei;Yan, Chang;Tian, Weibo;Tian, Weiping;Song, Xuding
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.301-308
    • /
    • 2018
  • Properties of AFS vary with the changes in the face-sheet materials. Hence, the performance of AFS can be optimized by selecting face-sheet materials. In this work, three types of face-sheet materials representing elastic-perfectly plastic, elastic-plastic strain hardening and purely elastic materials were employed to study their effects on the flexural behavior and failure mechanism of AFS systematically. Result showed face-sheet materials affected the failure mechanism and energy absorption ability of AFS significantly. When the foam cores were sandwiched by aluminum alloy 6061, the AFS failed by face-sheet yielding and crack without collapse of the foam core, there was no clear plastic platform in the Load-Displacement curve. When the foam cores were sandwiched by stainless steel 304 and carbon fiber fabric, there were no face-sheet crack and the sandwich structure failed by core shear and collapse, plastic platform appeared. Energy absorption abilities of steel and carbon fiber reinforced AFS were much higher than aluminum alloy reinforced one. Carbon fiber was suggested as the best choice for AFS for its light weight and high performance. The versus strength ratio of face sheet to core was suggested to be a significant value for AFS structure design which may determine the failure mechanism of a certain AFS structure.

Fracture Behaviour Analysis of the Crack at the Specimen with the Type of Mode I Composed of the Bonded Carbon Fiber Reinforced Plastic (접합된 CFRP로 구성된 Mode I형 시험편 크랙의 파괴 거동 해석)

  • Lee, Jung-Ho;Cho, Jae-Ung;Cheon, Seong-Sik;Kook, Jeong Han
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.356-360
    • /
    • 2015
  • In this paper, the carbon fiber reinforced plastic is processed as the double cantilever beam in order to estimate the fracture behavior of composite and is carried out with the static analysis as the mode I. The specimen sizes are 25 mm, 30 mm, 35 mm and 40 mm. And the material property is used with carbon. As the analysis result of mode I, the adhesive part is detached latest by the small force at the specimen thickness of 25 mm. The largest force is happened at the specimen thickness of 40 mm. The defection of the adhesive interface is shown slowest at the displacement of 9.75 mm at the specimen thickness of 25 mm. And the defection is shown quickest at the displacement of 7.82 mm at the specimen thickness of 40 mm. This defection is due to the fracture of specimen. The result of this study on the defection of the adhesive interface and the reaction force due to this defection is thought to be contributed to the safe structural design of the carbon fiber reinforced plastic.

Method for Determining Fiber Volume Fraction in Carbon/Epoxy Composites Considering Oxidation of Carbon Fiber (탄소섬유 산화 현상을 고려한 탄소복합재료의 섬유체적비 측정법)

  • Kim, YunHo;Kumar, Sathish;Choi, Chunghyeon;Kim, Chun-Gon;Kim, Sun-Won;Lim, Jae Hyuk
    • Composites Research
    • /
    • v.28 no.5
    • /
    • pp.311-315
    • /
    • 2015
  • Measuring fiber volume fraction properly is very important in designing composite materials because the fiber volume fraction mainly determines mechanical and thermal properties. Conventional Ignition methods are effective for ceramic fiber reinforcing composite materials. However, these methods are not proper for applying to carbon fiber reinforcing composites because of the venerable characteristic against oxidation of carbon fiber. In the research, fiber volume fraction of carbon fiber composites was obtained by a thermogravimetric analysis considering oxidation characteristic of the carbon fiber and the method was compared and verified with the results from microscopic cross section images.

Bending and Torsional Characteristics of Rectangular CFRP Tubes with Various Aspect Ratios (다양한 형상비를 갖는 사각 CFRP 튜브의 굽힘 및 비틀림 특성)

  • Lee, Yongsung;Cheong, Seong-Kyun
    • Composites Research
    • /
    • v.27 no.2
    • /
    • pp.37-41
    • /
    • 2014
  • Fiber reinforced composite materials have outstanding specific strength and specific stiffness. So the use of composite materials increases in various kinds of industrial fields including sports goods such as bicycles. Composite materials are used to make structural parts with various kinds of shapes. Specially, rectangular composite tubes are used to make a few of composite bicycle frames, but there has been a few of research on this issue. Rectangular composite tubes are designed to have appropriate radius of curvature and endure bending and torsional loads. In this research, nine kinds of rectangular composite tubes having aspect ratios 1:1, 1:1.5, 1:2 and radius of curvatures R5, R10, R15 were fabricated. The carbon fiber reinforced composite material was used to make tubes having same cross sectional areas. The stacking sequence of tubes is $[0/90/{\pm}45]s$. Experimental evaluation was accomplished to apply bending and torsional load to the tubes. Experimental results show that bending and torsional characteristics depend on radius of curvature and aspect ratio of rectangular composite tubes.

Fabrication and Characterization of Carbon Long-Fiber Thermoplastic Composites using the LFT-D System (LFT-D 시스템을 이용한 탄소 장섬유 열가소성 복합재의 제조 및 인장특성 분석)

  • Shin, Yujeong;Jeung, Han-Kyu;Park, Si-Woo;Park, Dong-Wook;Park, Yeol;Jung, Jin-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.25-30
    • /
    • 2017
  • Carbon-fiber-reinforced plastic (CFRP) composite materials have been widely used in various industrial fields because the design variables can be adjusted according to the application of the required structure. Thermosetting and thermoplastic resins are used as the base materials of CFRP composites for the lightweight construction of automotive components. Thermoplastics have several advantages such as no curing and recyclability compared to thermosetting resin. In this study, CFRP composites were made using the Long-Fiber Thermoplastic-Direct (LFT-D) process. The LFT-D process includes an in-line production system that directly impregnates a thermoplastic resin, extrudes the composite material, and molds it. This process increases the strength and decreases the molding time. The tensile strength characteristics on the mechanical properties of CFRP were analyzed according to the parameters of LFT-D based on thermoplastics. To analyze the properties of CFRP, the specimens were prepared based on the tensile test standard ASTM 3039 of composite materials.

Analysis on Life Prediction for Different Materials in Vehicle Door Hinge Lightweight Design (차량용 도어 힌지의 경량화를 위한 재질별 수명 예측)

  • Yu, Ki Hyun;Kim, Hong Gun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.693-699
    • /
    • 2013
  • Environmental issues are attracting increasing interest worldwide, and accordingly, environmental regulations for vehicles are being made more stringent. As a result, the car industry is conducting studies focusing on fuel efficiency and lightweight vehicles. To manufacture lightweight vehicles, existing steel parts are replaced by composite materials and lightweight metals. In this study, the fatigue life of a new material for manufacturing lightweight car door hinges was predicted using a finite-element analysis program. The existing steel material was replaced by carbon-fiber-reinforced plastic (CFRP) and aluminum alloy 6061, and the test results were analyzed. The maximum stress decreased by approximately three times, whereas the fatigue life and safety factor increased. When only CFRP was used, its allowable stress, safety factor, and fatigue life were excellent, but the sagging of the product exceeded the allowable value, which posed a limitation in use. Therefore, it seems desirable to use an appropriate combination of steel, AA6061, and CFRP for this product.