• 제목/요약/키워드: Carbon Diffused Layer

검색결과 11건 처리시간 0.033초

Intimate Understanding for Growth Mode of Graphene on Copper

  • 송우석;전철호;김수연;김유석;김성환;이수일;정대성;박종윤
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.181-181
    • /
    • 2012
  • Direct synthesis of graphene using a chemical vapor deposition (CVD) has been considered a facile way to produce large-area and uniform graphene film, which is an accessible method from an application standpoint. Hence, their fundamental understanding is highly required. Unfortunately, the CVD growth mechanism of graphene on Cu remains elusive and controversial. Here, we present the evidences for two different growth modes of graphene on Cu investigated by varying carbon feedstock (C2H2 and CH4) and working pressure. The number of uniform graphene layer grown by C2H2 increased with increasing its injection time. A combined secondary ion mass spectrometry (SIMS) and X-ray diffraction (XRD) study revealed a carbon-diffused Cu layer created below surface region of Cu substrate with the expansion of Cu lattice. The graphene on Cu was grown by the diffusion and precipitation mode not by the surface adsorption mode, because similar results were observed in graphene/Ni system. The carbon-diffused Cu layer was also observed after graphene growth under high CH4 pressure. Based on various previous results and ours, we have successfully found that there are two selective growth modes for graphene on Cu substrate, and a desired mode can be chosen by tuning working pressure corresponding to the kind of carbon feedstock. We believe that this finding will shed light on high quality graphene growth and its multifaceted applications.

  • PDF

육성 용접부의 기계적 성질에 미치는 열처리조건의 영향 (Effect of heat treatment on mechanical properties of overlay welds)

  • 이기호;김기철;윤의박
    • Journal of Welding and Joining
    • /
    • 제7권4호
    • /
    • pp.30-37
    • /
    • 1989
  • Effect of heat treatment on mechanical properties of an overlay weldment was investigated. Over welding was carried out on the structural C-Mn mild steel substrate to take required test specimens. Shielded metal arc welding process with 13Cr-0.2Ni stick electrode was applied. The heat treatment temperatures and holding times were $450{\circ}C., 550{\circ}C., 650{\circ}C., 750{\circ}C., 850{\circ}C.$ and 0.5hr, 2hr, 10hr, respectively. Mechanical tests and microscopic inspection were also carried out to investigate welds soundness. Test results indicated that carbon migration was dominant near bonded zone. At temperature of around 650.deg. C, carburized layer and decarburized layer were formed remarkably along overlay welds region and C-Mn mild steel region, respectively. The wideth of these layers became wider with increasing heat treatment temperature and/or holding time at the elevated temperature, and this relationship agreed with Larson-Miller parameter. Side bending test results demonstrated that the crack free region of overlay welds could be deduced from the relationship between temperature and holding time.

  • PDF

Transfer-free growth of graphene by Ni-C co-deposition

  • An, Sehoon;Lee, Geun-Hyuk;Song, Inseol;Jang, Seong Woo;Lim, Sang-Ho;Han, Seunghee
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.109.2-109.2
    • /
    • 2015
  • Graphene, as a single layer of $sp^2$-bonded carbon atoms packed into a 2D honeycomb crystal lattice, has attracted much attention due to its outstanding properties such as high carrier mobility, chemical stability, and optical transparency. In order to synthesize high quality graphene, transition metals, such as nickel and copper, have been widely employed as catalysts, which need transfer to desired substrates for various applications. However, the transfer steps inevitably induce defects, impurities, wrinkles, and cracks of graphene. Here, we report a facile transfer-free graphene synthesis method through nickel and carbon co-deposited layer, which does not require separately deposited catalytic nickel and carbon source layers. The 100 nm NiC layer was deposited on the top of $SiO_2/Si$ substrates by nickel and carbon co-deposition. When the sample was annealed at $1000^{\circ}C$, the carbon atoms diffused through the NiC layer and deposited on both sides of the layer to form graphene upon cooling. The remained NiC layer was removed by using nickel etchant, and graphene was then directly obtained on $SiO_2/Si$ without any transfer process. Raman spectroscopy was carried out to confirm the quality of resulted graphene layer. Raman spectra revealed that the resulted graphene was at high quality with low degree of $sp^3$-type structural defects. Furthermore, the Raman analysis results also demonstrated that gas flow ratio (Ar : $CH_4$) during the NiC deposition and annealing temperature significantly influence not only the number of graphene layers but also structural defects. This facile non-transfer process would consequently facilitate the future graphene research and industrial applications.

  • PDF

폴리이미드 기판에 극저온 Catalytic-CVD로 제조된 니켈실리사이드와 실리콘 나노박막 (Nano-thick Nickel Silicide and Polycrystalline Silicon on Polyimide Substrate with Extremely Low Temperature Catalytic CVD)

  • 송오성;최용윤;한정조;김건일
    • 대한금속재료학회지
    • /
    • 제49권4호
    • /
    • pp.321-328
    • /
    • 2011
  • The 30 nm-thick Ni layers was deposited on a flexible polyimide substrate with an e-beam evaporation. Subsequently, we deposited a Si layer using a catalytic CVD (Cat-CVD) in a hydride amorphous silicon (${\alpha}$-Si:H) process of $T_{s}=180^{\circ}C$ with varying thicknesses of 55, 75, 145, and 220 nm. The sheet resistance, phase, degree of the crystallization, microstructure, composition, and surface roughness were measured by a four-point probe, HRXRD, micro-Raman spectroscopy, FE-SEM, TEM, AES, and SPM. We confirmed that our newly proposed Cat-CVD process simultaneously formed both NiSi and crystallized Si without additional annealing. The NiSi showed low sheet resistance of < $13{\Omega}$□, while carbon (C) diffused from the substrate led the resistance fluctuation with silicon deposition thickness. HRXRD and micro-Raman analysis also supported the existence of NiSi and crystallized (>66%) Si layers. TEM analysis showed uniform NiSi and silicon layers, and the thickness of the NiSi increased as Si deposition time increased. Based on the AES depth profiling, we confirmed that the carbon from the polyimide substrate diffused into the NiSi and Si layers during the Cat-CVD, which caused a pile-up of C at the interface. This carbon diffusion might lessen NiSi formation and increase the resistance of the NiSi.

A facile synthesis of transfer-free graphene by Ni-C co-deposition

  • An, Sehoon;Lee, Geun-Hyuk;Jang, Seong Woo;Hwang, Sehoon;Yoon, Jung Hyeon;Lim, Sang-Ho;Han, Seunghee
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.129-129
    • /
    • 2016
  • Graphene, as a single layer of $sp^2$-bonded carbon atoms packed into a 2D honeycomb crystal lattice, has attracted much attention due to its outstanding properties. In order to synthesize high quality graphene, transition metals, such as nickel and copper, have been widely employed as catalysts, which needs transfer to desired substrates for various applications. However, the transfer steps are not only complicated but also inevitably induce defects, impurities, wrinkles, and cracks of graphene. Furthermore, the direct synthesis of graphene on dielectric surfaces has still been a premature field for practical applications. Therefore, cost effective and concise methods for transfer-free graphene are essentially required for commercialization. Here, we report a facile transfer-free graphene synthesis method through nickel and carbon co-deposited layer. In order to fabricate 100 nm thick NiC layer on the top of $SiO_2/Si$ substrates, DC reactive magnetron sputtering was performed at a gas pressure of 2 mTorr with various Ar : $CH_4$ gas flow ratio and the 200 W DC input power was applied to a Ni target at room temperature. Then, the sample was annealed under 200 sccm Ar flow and pressure of 1 Torr at $1000^{\circ}C$ for 4 min employing a rapid thermal annealing (RTA) equipment. During the RTA process, the carbon atoms diffused through the NiC layer and deposited on both sides of the NiC layer to form graphene upon cooling. The remained NiC layer was removed by using a 0.5 M $FeCl_3$ aqueous solution, and graphene was then directly obtained on $SiO_2/Si$ without any transfer process. In order to confirm the quality of resulted graphene layer, Raman spectroscopy was implemented. Raman mapping revealed that the resulted graphene was at high quality with low degree of $sp^3$-type structural defects. Additionally, sheet resistance and transmittance of the produced graphene were analyzed by a four-point probe method and UV-vis spectroscopy, respectively. This facile non-transfer process would consequently facilitate the future graphene research and industrial applications.

  • PDF

Characteristics of Ni-based Alloy Bond in Diamond Tool Using Vacuum Brazing Method

  • An, Sang-Jae;Song, Min-Seok;Jee, Won-Ho
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1130-1131
    • /
    • 2006
  • We found that the """interface reaction between Ni-based alloy bond, diamond, and steel core is very critical in bond strength of diamond tool. None element from metal bond diffuses into the steel core but the Fe element of steel core was easily diffused into the bond. This diffusion depth of Fe has a great effect on the bonding strength. The Cr in steel core accelerated the Fe diffusion and improved the bond strength, on the other hand, carbon decreased the strength. Ni-based alloy bond including Cr was chemically bonded with diamond by forming Cr carbide. However, the Cr and Fe in STS304 were largely interdiffused, the strength was very low. The Cr passivity layer formed at surface of STS304 made worse strength at commissure in brazing process.

  • PDF

강기판 위에 코팅된 Ni-W의 고온산화거동 (High Temperature Oxidation Behavior of Ni-W Coatings Electrodeposited on Steel)

  • 고재황;권식철;장도연;이동복
    • 한국표면공학회지
    • /
    • 제36권6호
    • /
    • pp.430-436
    • /
    • 2003
  • The nanoocrystalline Ni-l5W(at.%) coating electrodeposited on the high carbon steel was oxidized at 700 and $800^{\circ}C$ in air, and the resultant oxidation properties were investigated using XRD, EPMA, TGA and TEM. The oxidation resistance of the coating was not so good that most of the coating was oxidized after oxidation at $800^{\circ}C$ for 5 hrs. The oxidation led to the formation of the outer, thin NiO oxide scale and the inner, porous, rather thick ($NiWO_4$+NiO) mixed layer containing a bit of $WO_2$. During oxidation, substrate elements such as Fe and Cr diffused outwardly toward the coating, according to the concentration gradient.

Controlled Growth of Large-area Mono-, Bi-, and Few-layer Graphene by Chemical Vapor Deposition on Copper Substrate

  • Kim, Yooseok;Lee, Su-il;Jung, Dae Sung;Cha, Myoung-Jun;Kim, Ji Sun;Park, Seung-Ho;Park, Chong-Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.380.2-380.2
    • /
    • 2014
  • Direct synthesis of graphene using a chemical vapor deposition (CVD) has been considered a facile way to produce large-area and uniform graphene film, which is an accessible method from an application standpoint. Hence, their fundamental understanding is highly required. Unfortunately, the CVD growth mechanism of graphene on Cu remains elusive and controversial. Here, we present the effect of graphene growth parameters on the number of graphene layers were systematically studied and growth mechanism on copper substrate was proposed. Parameters that could affect the thickness of graphene growth include the pressure in the system, gas flow rate, growth pressure, growth temperature, and cooling rate. We hypothesis that the partial pressure of both the carbon sources and hydrogen gas in the growth process, which is set by the total pressure and the mole fraction of the feedstock, could be the factor that controls the thickness of the graphene. The graphene on Cu was grown by the diffusion and precipitation mode not by the surface adsorption mode, because similar results were observed in graphene/Ni system. The carbon-diffused Cu layer was also observed after graphene growth under high CH4 pressure. Our findings may facilitate both the large-area synthesis of well-controlled graphene features and wide range of applications of graphene.

  • PDF

이차전지 음극용 탄소 전극을 이용한 리튬이온 커패시터 연구 (Study of Lithium Ion Capacitors Using Carbonaceous Electrode Utilized for Anode in Lithium Ion Batteries)

  • 오례경;홍정의;양원근;류광선
    • 공업화학
    • /
    • 제24권5호
    • /
    • pp.489-493
    • /
    • 2013
  • 기존의 EDLC용 활성탄소 대신 리튬이차전지용 탄소류 음전극(천연흑연, 인조흑연, 하드카본, MCMB)을 이용해 리튬이온 커패시터를 구성하면 리튬의 층간 삽입반응으로 인해 기존의 물질보다 에너지 밀도가 큰 전극소재를 개발할 수 있을 것이다. 이 실험에서는 기존 리튬이차전지 음극용 탄소 물질을 대칭 전극으로 사용하여 코인형 커패시터를 제조하여 성능을 측정하였다. 또한 리튬을 미리 삽입시킨 탄소류 전극을 이용한 커패시터를 제조한 후 성능을 측정한 결과, 축전현상이 일어나는 것을 알 수 있었다. 즉 전해액에서 전하분리에 의한 리튬이온의 이동을 보충할 수 있다면 기존의 리튬이온은 탄소류 전극의 층간으로 확산되어 들어가 기존의 대칭성 탄소류 전극의 경우에 비해 축전 용량이 증가한다. 또한 표면적이 매우 큰 graphene oxide를 사용하여 위와 같이 실험한 결과 용량이 크게 나왔으며 이로부터 슈퍼커패시터 전극용 물질에는 높은 비표면적이 중요한 요소로 작용한다는 것을 알 수 있었다.

EF-TEM을 이용한 비정질 실리카 나노입자의 구조 및 상전이 연구 (Structural Analysis & Phase Transition of Amorphous Silica Nanoparticles Using Energy-Filtering TEM)

  • 박종일;김진규;송지호;김윤중
    • Applied Microscopy
    • /
    • 제34권1호
    • /
    • pp.23-29
    • /
    • 2004
  • 본 연구에서는 에너지 여과장치와 직접 고온 가열 장치를 이용하여 실리카 나노입자의 비정질 구조 분석과 가열실험을 통한 구조변화에 대해 연구하였다. 실리카 나노입자의 전자회절도형은 세 개의 diffuse한 ring으로 구성이 되어 있으며, $900^{\circ}C$의 온도에서 실리카 나노입자는 서서히 결정화가 이루어짐을 알 수가 있었다. 세 개의 diffuse한 ring은 비정질 실리카 구조가 $SiO_4$ tetrahedra가 구조의 기본 단위로 이루어졌으며, 가열에 의해 이들이 점이적으로 tridymite 이상적인 층상 구조로 결정화되어 간다는 것을 이해할 수 있었다. 또한 전자현미경 내의 고진공하에서 $850^{\circ}C$ 이상의 온도 가열로 인해 $SiO_2$로부터 증발된 SiO가 grid에 재증착되는 것을 관찰할 수 있었고, 남아 있는 $SiO_2$는 전기로를 이용한 가열 실험결과와 같이 비정질 구조에서 orthorhombic trydimite로의 결정화가 이루어짐을 알 수 있었다.