Structural Analysis & Phase Transition of Amorphous Silica Nanoparticles Using Energy-Filtering TEM

EF-TEM을 이용한 비정질 실리카 나노입자의 구조 및 상전이 연구

  • Park, Jong-Il (Dept. of Chemistry, KAIST) ;
  • Kim, Jin-Gyu (Division of Nano-Material & Environment Sciences, Korea Basic Science Institute) ;
  • Song, Ji-Ho (Division of Nano-Material & Environment Sciences, Korea Basic Science Institute) ;
  • Kim, Youn-Joong (Division of Nano-Material & Environment Sciences, Korea Basic Science Institute)
  • 박종일 (한국과학기술원 화학과) ;
  • 김진규 (한국기초과학지원연구원 나노환경부) ;
  • 송지호 (한국기초과학지원연구원 나노환경부) ;
  • 김윤중 (한국기초과학지원연구원 나노환경부)
  • Published : 2004.03.01

Abstract

In this study, we introduce the structural analysis of amorphous silica nanoparticles by EF-TEM electron diffraction and in-situ heating experiments. Three diffused rings were observed on the electron diffraction patterns of initial silica nanoparticles, while crystalline spot patterns were gradually appeared during the insitu heating process at $900^{\circ}C$. These patterns indicate the basic unit of $SiO_4$ tetrahedra consisting amorphous silica and gradual crystallization into the ideal layer structure of tridymite by heating. Under high vacuum condition in TEM, SiO nanoparticles were redeposited on the carbon grid after evaporation of SiO gas from $SiO_2$ above $850^{\circ}C$ and the remaining $SiO_2$ were crystallized into orthorhombic tridymite, consistent with ex-situ heating results in furnace at $900^{\circ}C$.

본 연구에서는 에너지 여과장치와 직접 고온 가열 장치를 이용하여 실리카 나노입자의 비정질 구조 분석과 가열실험을 통한 구조변화에 대해 연구하였다. 실리카 나노입자의 전자회절도형은 세 개의 diffuse한 ring으로 구성이 되어 있으며, $900^{\circ}C$의 온도에서 실리카 나노입자는 서서히 결정화가 이루어짐을 알 수가 있었다. 세 개의 diffuse한 ring은 비정질 실리카 구조가 $SiO_4$ tetrahedra가 구조의 기본 단위로 이루어졌으며, 가열에 의해 이들이 점이적으로 tridymite 이상적인 층상 구조로 결정화되어 간다는 것을 이해할 수 있었다. 또한 전자현미경 내의 고진공하에서 $850^{\circ}C$ 이상의 온도 가열로 인해 $SiO_2$로부터 증발된 SiO가 grid에 재증착되는 것을 관찰할 수 있었고, 남아 있는 $SiO_2$는 전기로를 이용한 가열 실험결과와 같이 비정질 구조에서 orthorhombic trydimite로의 결정화가 이루어짐을 알 수 있었다.

Keywords

References

  1. Ahn J, Kim J, Lo GQ, Kwong DL: Suppression of stress induced leakage current in ultrathin N20 oxides. Appl Phys Lett 60 : 2809, 1992 https://doi.org/10.1063/1.106835
  2. Kim YJ, Jeung JM, Lee YB, Lee S, Song J: An investigation of in situ TEM heating experiments of powder samples. Korean J of Electron Microscopy 31(4) : 315 323, 2001
  3. Liu F, Rugheimer P, Mateeva E, Savage DE, Legally MG: Response of a strained semiconductor structure, Nature 416 : 498, 2002 https://doi.org/10.1038/416498a
  4. Lucovsky G, Banerjee A, Hinds B, Claflin B, Koh K, Yang H: Minimization of suboxide transition regions at Si $SiO_2$ interfaces by $900^{\circ}C$ rapid thermal annealing. J Vac Sci Technol B 15 : 1074, 1997 https://doi.org/10.1116/1.589417
  5. Muller DA, Sorsch T, Moccio S, Baumann FH, Evans Lutterodt K, Trimp G: The electronic structure at the atomic scale of ultrathin gate oxide. Nature 399 : 758, 1999 https://doi.org/10.1038/21602
  6. Sandhage KH, Dickerson MB, Huseman PM, Caranna MA, Clifton JD, Bull TA, Heibel TJ, Overton WR, Schoenwaelder MEA: Novel, Bioclastic route to self assembled, 3D, chemically tailored meso/nanostructures: shape preserving reactive conversion of biosilica (diatom) microshells. Adv Mat 14 : 429, 2002 https://doi.org/10.1002/1521-4095(20020318)14:6<429::AID-ADMA429>3.0.CO;2-C
  7. Shimoo T, Takeuchi H, Okamura K: Thermal stability of polycarbosilane derived silicon carbide fibers under reduced pressures. J Am Ceram Soc 84 : 566 570, 2001 https://doi.org/10.1111/j.1151-2916.2001.tb00699.x
  8. Vrieling EG, Beelen TPM, van Santen RA, Gieskes WWC: Mesophases of (bio)polymer silica particles inspire a model for silica biomineralization in diatoms. Angew Chem 114 : 1613, 2002 https://doi.org/10.1002/1521-3757(20020503)114:9<1613::AID-ANGE1613>3.0.CO;2-W
  9. Waltenburg HN, Yates JT: Surface Chemistry of Silicon. Chem Rev 95 : 1589 1673, 1995 https://doi.org/10.1021/cr00037a600
  10. Yasuda T, Ma Y, Habermehl S, Lucovsky G: Low temperature preparation of $SiO_2$/Si (100) interfaces using a two step remote plasma assisted oxidation deposition process. Appl Phys Lett 60 :434,1992 https://doi.org/10.1063/1.106626
  11. Zou X, Sukharev Y, Hovmoller S: Quantitative electron diffraction new features in the program system ELD, Ultramicroscopy 52 : 436 444, 1993 https://doi.org/10.1016/0304-3991(93)90058-6