• Title/Summary/Keyword: Carbon Coating

Search Result 792, Processing Time 0.035 seconds

Tribological study on the thermal stability of thick ta-C coating at elevated temperatures

  • Lee, Woo Young;Ryu, Ho Jun;Jang, Young Jun;Kim, Gi Taek;Deng, Xingrui;Umehara, Noritsugu;Kim, Jong Kuk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.144.2-144.2
    • /
    • 2016
  • Diamond-like carbon (DLC) coatings have been widely applied to the mechanical components, cutting tools due to properties of high hardness and wear resistance. Among them, hydrogenated amorphous carbon (a-C:H) coatings are well-known for their low friction properties, stable production of thin and thick film, they were reported to be easily worn away under high temperature. Non-hydrogenated tetrahedral amorphous carbon (ta-C) is an ideal for industrial applicability due to good thermal stability from high $sp^3$-bonding fraction ranging from 70 to 80 %. However, the large compressive stress of ta-C coating limits to apply thick ta-C coating. In this study, the thick ta-C coating was deposited onto Inconel alloy disk by the FCVA technique. The thickness of the ta-C coating was about $3.5{\mu}m$. The tribological behaviors of ta-C coated disks sliding against $Si_3N_4$ balls were examined under elevated temperature divided into 23, 100, 200 and $300^{\circ}C$. The range of temperature was setting up until peel off observed. The experimental results showed that the friction coefficient was decreased from 0.14 to 0.05 with increasing temperature up to $200^{\circ}C$. At $300^{\circ}C$, the friction coefficient was dramatically increased over 5,000 cycles and then delaminated. These phenomenon was summarized two kinds of reasons: (1) Thermal degradation and (2) graphitization of ta-C coating. At first, the reason of thermal degradation was demonstrated by wear rate calculation. The wear rate of ta-C coatings showed an increasing trend with elevated temperature. For investigation of relationship between hardness and graphitization, thick ta-C coatings(2, 3 and $5{\mu}m$) were additionally deposited. As the thickness of ta-C coating was increased, hardness decreased from 58 to 49 GPa, which means that graphitization was accelerated. Therefore, now we are trying to increase $sp^3$ fraction of ta-C coating and control the coating parameters for thermal stability of thick ta-C at high temperatures.

  • PDF

A Study on the Tetrahedral Amorphous Carbon (ta-C) Coating on Medical Polymer Materials for 3D Printing Artificial Teeth (의료용 폴리머 소재를 활용한 3D 프린팅 인공치아용 사면체 비정질 카본 코팅 기술 연구)

  • Jang, Young-Jun;Kim, Jongkuk;Shin, Chang-Hee;Yu, Sung-Mi
    • Tribology and Lubricants
    • /
    • v.38 no.6
    • /
    • pp.255-260
    • /
    • 2022
  • This research presents tetrahedral amorphous (ta-C) coating on the artificial tooth for improving the durability and functionality (esthtics, foreign body of tooth) by filtered cathodic vacuum arc (FCVA). A differentiated coating method is required for a ta-C coating on polymer owing to the low melting point of the polymer, inter-facial adhesion, low friction, and non-conductivity. Herein, ta-C coating is applied below 50℃, and the potential difference of the carbon plasma drawn to the substrate was controlled by applying a positive duct bias voltage without using a substrate bias voltage. Consequently, the ta-C coating with a thickness of 70nm using the duct bias condition of 20V with the highest plasma intensity satisfies the esthetics of the artificial tooth and had a 5B level of inter-facial adhesion. In addition, the composite hardness of ta-C/polymer is 380 MPa, and correlations with esthetics, sp3 bonding, and mechanical properties. The friction coefficient (CoF) of the ta-C coating in a water-lubricated environment is 0.07, showing a six-fold reduction in CoF compared with that of a polymer.

Present status of Standardization of Diamond-like Carbon Coating in Japan

  • Hiratsuka, Masanori;Ohtake, Naoto;Saitoh, Hidetoshi
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.12.2-12.2
    • /
    • 2011
  • Diamond-like carbon (DLC) coatings are used nowadays in various applications such as a protective coating against wear or corrosion in automotive parts, and recently its use is more and more apparent in particular biomedical applications [1]. The Japanese Ministry of Economy, Trade and Industry has started a program of collaborative study for industrial standardization of DLC films and their evaluation techniques. Japan New Diamond Forum (JNDF), Nanotec Corporation and the Nagaoka University of Technology are conducting this program. This project includes national organizations (businesses, universities, and research facilities), encompassing a wide range of requirements. JNDF organize Japanese project committee and working group. The purpose of this report is to discuss standardization and classification of DLC coatings.

  • PDF

수소 동위원소 교환반응을 위한 소수성 고분자 촉매집합체 제조 특성 연구

  • 이성호;안도희;이한수;김용성;정흥석
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.127-132
    • /
    • 1996
  • 촉매탑에서 수소와 물사이의 수소 동위원소 교환 반응에 의한 중수 분리 및 삼중수소 제거를 위한 소수성 촉매집합체 제조기술을 개발하기 위하여 소수성 촉매집합체 제조 특성에 대하여 연구하였다. 본 연구에서 먼저 일반적인 함침법 및 colloidal method 의하여 각각 백금을 activated carbon에 담지시켜 Pt/Carbon 촉매를 제조하고, 수소 흡착법에 의하여 촉매의 백금 분산도를 비교 분석하였다. 제조된 Pt/Carbon 촉매를 Wanke등의 방법에 따라 소수성 teflon 수지를 binding agent로 사용하여 ceramic bell-saddle 및 육면체형 packing등의 충전물 표면에 coating시켜 촉매 집합체를 제조하고 소결 온도, 충전물의 형태 및 표면 부위에 따른 surface coating 특성에 대하여 연구하였다.

  • PDF

Alcohol Gas Sensors using Spray-coated Carbon Nanotube Thin Film (스프레이 코팅된 탄소나노튜브 박막을 이용한 알코올 가스 센서)

  • Kim, Seong-Jeen
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.9
    • /
    • pp.783-788
    • /
    • 2008
  • We suggest a CNT-based gas sensor for breath alcohol measurement. The sensor was composed of single-walled carbon nanotubes (SWCNTs) thin film on flexible PES (polyethersulfone) substrate, and the SWCNTs thin film was formed by multiple spray-coating with SWCNTs solution which was well-dispersed, highly controlled and functionalized in ethanol solvent. In this work, three types of SWCNTs thin films were deposited with changes in the number of spray-coatings to 20, 40 and 60 times in order to compare electrical response properties of the SWCNTs thin films. from the fabricated sensors, conductance and capacitance responses were measured and discussed. Alcohol gas sensors have been commercialized widely as gauge for breath alcohol measurement which is applicable to checking whether car drivers are drinking-driving or not. Our alcohol gas sensors showed good sensitivity and linearity even at room temperature.

The Effect of Electrolyte-coating on the Mechanical Performance of Carbon Fabric for Multifunctional Structural Batteries (다기능성 구조전지용 탄소섬유직물의 전해질 코팅이 기계적 성능에 미치는 효과)

  • Park, Hyun-Wook;Park, Mi-Young;Kim, Chun-Gon;Kim, Soo-Hyun
    • Composites Research
    • /
    • v.28 no.5
    • /
    • pp.285-290
    • /
    • 2015
  • Multiscale multiphysics in structural batteries make mechanical property testing difficult. In this research, the effect of electrolyte-coating on the mechanical performance of carbon fabric was studied using a suitable mechanical test method for structural batteries. For this experiment, two types of specimens were determined their dimension according to ASTM. One type of specimen was smaller than the standard dimension. The specimens were coated by spreading the electrolyte material on carbon fabric, hardened using epoxy, and tested for tensile properties using universal testing machine. As a result, it was found that the mechanical properties of carbon fabric were not influenced by electrolyte coating. In addition, the small-scale specimen used in this experiment was determined to be sufficiently reliable.

Improvement of Electrical Conductivity of Carbon-Fiber Reinforced Plastics by Nano-particles Coating (나노입자 코팅 탄소섬유 강화 복합재료의 전기전도도 향상)

  • Seo, Seong-Wook;Ha, Min-Seok;Kwon, Oh-Yang;Cho, Heung-Soap
    • Composites Research
    • /
    • v.23 no.6
    • /
    • pp.1-6
    • /
    • 2010
  • The electrical conductivity of carbon-fiber reinforced plastics (CFRP's) has been improved by indium-tin oxide (ITO) nano-particle coating on carbon fibers for the purpose of lightning strike protection of composite fuselage skins. ITO nano-particles were coated on the surface of carbon fibers by spraying the colloidal suspension with 10~40% ITO content. The electrical conductivity of the CFRP has been increased more than three times after ITO coating, comparable to or higher than that of B-787 composite fuselage skins with metal wire-meshes on the outer surface, without sacrificing the tensile property due to the existence of nano-particles at fiber-matrix interface. The damage area by the simulated lightning strike was also verified for different materials and conditions by using ultrasonic C-scan image. As the electrical conductivity of 40% nano-ITO coated sample surpass that of the B-787 sample, the damage area by lightning strike also appeared comparable to that of the materials currently employed for composite fuselage construction.

Manganese Doped LiFePO4 as a Cathode for High Energy Density Lithium Batteries (고에너지밀도 리튬전지를 위한 망간이 첨가된 LiFePO4 양극재료)

  • Kim, Dul-Sun;Kim, Jae-Kwang;Ahn, Jou-Hyeon
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.157-161
    • /
    • 2013
  • Porous $LiMn_{0.6}Fe_{0.4}PO_4$ (LMFP) was synthesized by a sol-gel process. Uniform dispersion of the conductive carbon source throughout LMFP with uniform carbon coating was achieved by heating a stoichiometric mixture of raw materials at $600^{\circ}C$ for 10 h. The crystal structure of LMFP was investigated by Rietveld refinement. The surface structure and pore properties were investigated by SEM, TEM and BET. The LMFP so obtained has a high specific surface area with a uniform, porous, and web-like nano-sized carbon layer at the surface. The initial discharge capacity and energy density were 152 mAh/g and 570 Wh/kg, respectively, at 0.1 C current density, and showed stable cycle performance. The combined effect of high porosity and uniform carbon coating leads to fast lithium ion diffusion and enhanced electrochemical performance.