DOI QR코드

DOI QR Code

The Effect of Electrolyte-coating on the Mechanical Performance of Carbon Fabric for Multifunctional Structural Batteries

다기능성 구조전지용 탄소섬유직물의 전해질 코팅이 기계적 성능에 미치는 효과

  • Park, Hyun-Wook (Dept. of Aerospace Engineering, Korea Advanced Institute of Science and Technology) ;
  • Park, Mi-Young (Dept. of Aerospace Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Chun-Gon (Dept. of Aerospace Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Soo-Hyun (Korea Institute of Energy Research)
  • Received : 2015.10.04
  • Accepted : 2015.10.30
  • Published : 2015.10.31

Abstract

Multiscale multiphysics in structural batteries make mechanical property testing difficult. In this research, the effect of electrolyte-coating on the mechanical performance of carbon fabric was studied using a suitable mechanical test method for structural batteries. For this experiment, two types of specimens were determined their dimension according to ASTM. One type of specimen was smaller than the standard dimension. The specimens were coated by spreading the electrolyte material on carbon fabric, hardened using epoxy, and tested for tensile properties using universal testing machine. As a result, it was found that the mechanical properties of carbon fabric were not influenced by electrolyte coating. In addition, the small-scale specimen used in this experiment was determined to be sufficiently reliable.

구조전지에서 멀티스케일로 일어나는 다중물리현상은 기계적 물성을 테스트하는 것을 어렵게 한다. 본 연구에서는 구조전지 셀에 적합한 기계적 물성 테스트 방법을 이용하여 탄소섬유직물의 전해질 코팅이 기계적 성능에 미치는 효과를 알아보았다. 이를 위해 ASTM의 표준 시편 규격을 참고하여 2가지 종류의 시편을 제작하였다. 기계적 물성 실험은 탄소섬유직물에 전해질을 도포하여 전해질 코팅을 수행하고 이를 다시 에폭시에 경화를 시켜 시편을 만들고 만능 인장시험기를 이용하여 인장실험을 진행하였다. 실험결과, 탄소섬유직물에 전해질의 코팅이 기계적물성에는 큰 영향을 주지 않음을 확인할 수 있었다. 또한 실험에 이용한 축소된 규격의 시편이 타당함을 확인할 수 있었다.

Keywords

References

  1. Liu, P., Sherman, E., and Jacobsen, A., "Design and Fabrication of Multifunctional Structural Batteries," Journal of Power Sources, Vol. 189, No. 1, 2009, pp. 646-650. https://doi.org/10.1016/j.jpowsour.2008.09.082
  2. Carlson, T. and Lief E. Asp, "Structural Carbon Fibre Composite/ PET Capacitors - Effects of Dielectric Separator Thickness," Composite: Part B, Vol. 49, 2013, pp. 16-21. https://doi.org/10.1016/j.compositesb.2013.01.009
  3. Qian, H., Anthony R. Kucernak, Emile S. Greenhalgh, Alexander Bismarck, and Milo S. P. Shaffer, "Multifunctional Structural Supercapacitor Composites Based on Carbon Aerogel Modified High Performance Carbon Fiber Fabric," Applied Materials & Interfaces, Vol. 5, 2013, pp. 6113-6122. https://doi.org/10.1021/am400947j
  4. Shirshova, N., Bismarck, A., Carreyette, S., Quentin P. V. Fontana, Emile S. Greenhalgh, Jacobsson, P., Johansson, P., Maciej J. Marczewski, Kalinka, G., Anthony R. J. Kucernak, Johan Scheers, Milo S. P. Shaffer, Joachim H. G. Steinke, and Wienrich, M., "Structural Supercapacitor Electrolytes Based on Bicontinuous Ionic Liquid-epoxy Resin Systems," Journal of Materials Chemistry A, Vol. 1, 2013, pp. 15300-15309. https://doi.org/10.1039/c3ta13163g
  5. S. Leijonmarck, T. Carlson, G. Lindbergh, L.E. Asp, H. Maples, and A. Bismarck, "Solid Polymer Electrolyte-coated Carbon Fibres for Structural and Novel Micro Batteries," Composites Science and Technology, Vol. 89, 2013, pp. 149-157. https://doi.org/10.1016/j.compscitech.2013.09.026
  6. Lachman, N., Qian, H., Houlle, M., Amadou, J., Milo S. P. Shaffer, and H. Daniel Wagner, " Fracture Behavior of Carbon Nanotube/carbon Microfiber Hybrid Polymer Composites," Journal of Materials Science, Vol. 48, No. 16, 2013, pp. 5590-5595. https://doi.org/10.1007/s10853-013-7353-2
  7. Ashby, M., Shercliff, H., and Cebon, D., "Materials: Engineering, Science, Processing and Design," Butterworth-Heinemann, Oxford, United Kingdom, 2007.
  8. Wu, W., Xiao, X., Huang, X., and Yan, S., "A multiphysics Model for the in situ Stress Analysis of the Separator in a Lithium-ion Battery Cell," Computational Materials Scienece, Vol. 48, No. 83, 2014, pp. 127-136.
  9. ASTM Standard D3039/3039M, "Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials," ASTM International, West Conshohocken, PA, 2014, DOI:10.1520/D3039_D3039M-14, www.astm.org.
  10. ASTM Standard E2586, "Standard Practice for Calculating and Using Basic Statistics," ASTM International, West Conshohocken, PA, 2014, DOI: 10.1520/E2586-14, www.astm.org.
  11. D. M. Wilson, "Statistical Tensile Strength of $Nextel^{TM}$ 610 and $Nextel^{TM}$ 720 Fibres," Journal of Materials Science, Vol. 32, 1997, pp. 2535-2542. https://doi.org/10.1023/A:1018538030985
  12. Park, J.K., "Principles and Applications of Lithium Secondary Batteries," Hongrung Publishing Company, Seoul, Korea, 2010.