• Title/Summary/Keyword: Carbon Anode

Search Result 461, Processing Time 0.032 seconds

Removal of Lead from Lead-loaded Activated Carbon Using Water Electrolysis (물의 전기분해를 이용한 납-흡착 활성탄으로부터 납의 제거)

  • Kim, Bu Ung;Sung, Kyoung Sik;Choi, Yeon Seok
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.929-933
    • /
    • 1999
  • Under the condition of water electrolysis in aqueous hydrochloric acid as the electrolyte, the lead removal from the lead-loaded activated carbon packed on the anode was investigated. The adequate flow condition is a total flow rate of 10 mL/min in the same flow rate ratio to both electrodes. The increase of current decreases pH values at the anode and the decrease of pH leads to the lead removal. This work shows that the water electrolysis is an efficient method for the lead removal from the lead-loaded activated carbon with a reduction in quantity of the chemical used in comparison with the acid rinse.

  • PDF

Expansion of Multi-wall Carbon Nanotubes and its Lithium Storage Property

  • Ahn, Jung-Ho;Ahn, Jeong-Seok
    • Journal of Powder Materials
    • /
    • v.24 no.4
    • /
    • pp.275-278
    • /
    • 2017
  • In the present work, we apply a technique that has been used for the expansion of graphite to multiwall carbon nanotubes (MWCNT). The nanotubes are rapidly heated for a short duration, followed by immersion in acid solution, so that they undergo expansion. The diameter of the expanded CNTs is 5-10 times larger than that of the as-received nanotubes. This results in considerable swelling of the CNTs and opening of the tube tips, which may facilitate the accessibility of lithium ions into the inner holes and the interstices between the nanotube walls. The Li-ion storage capacity of the expanded nanotubes is measured by using the material as an anode in Li-ion cells. The result show that the discharge capacity of the expanded nanotubes in the first cycle is as high as 2,160 mAh/g, which is about 28% higher than that of the un-treated MWCNT anode. However, the charge/discharge capacity quickly drops in subsequent cycles and finally reaches equilibrium values of ~370 mAh/g. This is possibly due to the destruction of the lattice structures by repeated intercalation of Li ions.

Synthesis and Characterization of Tin-Pyrolyzed Carbon Composites as Anode Material for Lithium Ion Secondary Batteries (리튬이온이차전지 음극활물질로써 주석을 첨가한 열분해탄소의 합성과 특성평가)

  • Hwang, Yun-Ju;Park, Sang-Ho;Kim, Ae-Rhan;Jisha, M.R.;Christy, Maria;Suh, Eun-Kyung;Nahm, Kee-Suk
    • Journal of Energy Engineering
    • /
    • v.19 no.1
    • /
    • pp.16-20
    • /
    • 2010
  • In present work, tin-carbon mixtures by using carbon from pyrolyzed coffee seeds were synthesized. Synthesis methods includes simple mixing and chemical mixing. X-ray diffraction pattern indicated carbon and tin mixture peaks and scanning electron microscope images showed particles size of $12{\sim}85\;{\mu}m$ and shape. Charge discharge test were carried out. Tin-carbon mixture by chemical mixing indicated higher discharge capacity of 191 mAh/g than commercial carbon black(105 mAh/g) for 15cycles. Tin-carbon mixture by simple mixing indicated similar performance to carbon black.

Study on the Effect of Physical Properties of Fuels on the Anode Reaction in a DCFC System (연료의 물리적 특성과 직접탄소연료전지의 연료극 반응성에 관한 연구)

  • Ko, Tae-Wook;Ahn, Seong-Yool;Choi, Gyung-Min;Kim, Duck-Jool
    • Journal of Energy Engineering
    • /
    • v.20 no.4
    • /
    • pp.309-317
    • /
    • 2011
  • The effect of physical properties of coal fuels and carbon particle on performance of DCFC (Direct Carbon Fuel Cell) was investigated. Shenhua and Adaro were selected as coal fuel and carbon particle was used for comparing with coal. The Ultimate, proximate, SEM, XRD, and BET analysis of samples were conducted. The component of char was more important than that of raw coal because the operating temperature of reactor is higher than devolatilization region of coal. The surface area and volume of pores affected significantly the performance of the system than content of fixed carbon or char rates. The performance of DCFC with carbon particle was in proportional to working temperature.

Development of Silicon Coated by Carbon with PVDF Precursor and Its Anode Characteristics for Lithium Batteries (PVDF 전구체를 이용한 탄소 도포 실리콘 재료의 개발 및 리튬이차전지 음극특성)

  • Doh, Chil-Hoon;Jeong, Ki-Young;Jin, Bong-Soo;Kim, Hyun-Soo;Moon, Seong-In;Yun, Mun-Soo;Choi, Im-Goo;Park, Cheol-Wan;Lee, Kyeong-Jik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.636-643
    • /
    • 2006
  • Si-C materials were synthesized by the heating the mixture of silicon and polyvinylidene fluoride (PVDF). The electrochemical properties of the Si-C materials as the high capacitive anode materials of lithium secondary batteries were evaluated by the galvanostatic charge-discharge test through 2032 type $Si-C{\mid}Li$ coin cells. Charge-discharge tests were performed at C/10 hour rate(C = 372 mAh/g). Initial discharge and charge capacities of $Si-C{\mid}Li$ cell using a Si-C material derived from PVDF(20wt.%) were found to be 1,830 and 526 mAh/g respectively. The initial discharge-charge characteristics of the developed Si-C electrode were analyzed by the electrochemical galvanostatic test adopting the capacity limited charge cut-off condition(GISOC). The range of reversible specific capacity IIE(intercalation efficiency at initial discharge-charge) and IICs(surface irreversible specific capacity) were 216 mAh/g, 68 % and 31 mAh/g, respectively.

Effects of anode surface area and methylene blue dye treatment on the power density of microbial fuel cell with sponge and carbon nano tube electrode (음극 전극 표면적과 메틸렌블루 염색이 스펀지 탄소나노 튜브 전극 미생물 연료전지의 전력수율에 미치는 영향)

  • Lee, Chae-Young;Park, Su-Hee;Song, Young-Chae;Woo, Jung-Hui;Yoo, Kyu-Seon;Chung, Jae-Woo;Han, Sun-Kee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.883-888
    • /
    • 2012
  • Anode electrode is one of the most important factors in microbial fuel cell (MFC). This study was conducted to investigate the effects of mediator as methylene blue (MB) and electrode surface area on the power density of MFC with sponge and carbon nano tube (CNT) electrode (SC). The SC electrode with MB (MC) showed the maximum power density increased from 74.0 $mW/m^2$ to 143.1 $mW/m^2$. The grid shaped sponge and CNT (GSC) electrode showed the maximum power density of 209.2 $mW/m^2$ due to the increase of surface area from 88.0 to 152.0 $cm^2$. The GSC electrode with MB (GMC) revealed the maximum power density of 384.9 $mW/m^2$ which was 5.2 times higher than that obtained from the MFC with SC. Therefore MB and increase of surface area led to enhance the performance of microbial fuel cell such as power density.

Application of Pt/C (60 wt.%) on electrode catalyst layer of direct methanol fuel cell (백금담지 촉매의 직접메탄올 연료전지 환원전극 적용)

  • Cho, Yong-Hun;Cho, Yoon-Hwan;Park, Hyun-Seo;Jung, Nam-Gee;Sung, Yung-Eun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.188-190
    • /
    • 2007
  • The MEA with the catalyst layer containing PtRu black and 60 wt. %Pt/C as their anode and cathode catalysts. For find to effect of carbon support, the MEA with platinum black for cathode catalyst was fabricated. The performance of the MEA with the catalyst layer containing (PtRu black:60 wt.% Pt/C) as their anode and cathode catalyst has shown competitively higher value than the performance of the MEA with the catalyst layer containing (PtRu black:Pt black) as their anode and cathode catalyst.

  • PDF

Simple Synthesis of SiOx by High-Energy Ball Milling as a Promising Anode Material for Li-Ion Batteries

  • Sung Joo, Hong;Seunghoon, Nam
    • Corrosion Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.445-453
    • /
    • 2022
  • SiOx was prepared from a mixture of Si and SiO2 via high-energy ball milling as a negative electrode material for Li-ion batteries. The molar ratio of Si to SiO2 as precursors and the milling time were varied to identify the synthetic condition that could exhibit desirable anode performances. With an appropriate milling time, the material showed a unique microstructure in which amorphous Si nanoparticles were intimately embedded within the SiO2 matrix. The interface between the Si and SiO2 was composed of silicon suboxides with Si oxidation states from 0 to +4 as proven by X-ray photoelectron spectroscopy and electrochemical analysis. With the addition of a conductive carbon (Super P carbon black) as a coating material, the SiOx/C manifested superior specific capacity to a commercial SiOx/C composite without compromising its cycle-life performance. The simple mechanochemical method described in this study will shed light on cost-effective synthesis of high-capacity silicon oxides as promising anode materials.

Molten Salt-Based Carbon-Neutral Critical Metal Smelting Process From Oxide Feedstocks

  • Wan-Bae Kim;Woo-Seok Choi;Gyu-Seok Lim;Vladislav E. Ri;Soo-Haeng Cho;Suk-Cheol Kwon;Hayk Nersisyan;Jong-Hyeon Lee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.9-22
    • /
    • 2023
  • Spin-off pyroprocessing technology and inert anode materials to replace the conventional carbon-based smelting process for critical materials were introduced. Efforts to select inert anode materials through numerical analysis and selected experimental results were devised for the high-throughput reduction of oxide feedstocks. The electrochemical properties of the inert anode material were evaluated, and stable electrolysis behavior and CaCu generation were observed during molten salt recycling. Thereafter, CuTi was prepared by reacting rutile (TiO2) with CaCu in a Ti crucible. The formation of CuTi was confirmed when the concentration of CaO in the molten salt was controlled at 7.5mol%. A laboratory-scale electrorefining study was conducted using CuTi(Zr, Hf) alloys as the anodes, with a Ti electrodeposit conforming to the ASTM B299 standard recovered using a pilot-scale electrorefining device.

Synthesis of Various Biomass-derived Carbons and Their Applications as Anode Materials for Lithium Ion Batteries (다양한 바이오매스 기반의 탄소 제조 및 리튬이온전지 음극활물질로의 응용)

  • Chan-Gyo Kim;Suk Jekal;Ha-Yeong Kim;Jiwon Kim;Yeon-Ryong Chu;Hyung Sub Sim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.27-34
    • /
    • 2023
  • In this study, various plant-based biomass are recycled into carbon materials to employ as anode materials for lithium-ion batteries. Firstly, various biomass of rice husk, chestnut, tea bag, and coffee ground are collected, washed, and ground. The carbonization process is followed under a nitrogen atmosphere at 850℃. The morphological and chemical properties of materials are investigated using FE-SEM, EDS, and FT-IR to compare the characteristic differences between various biomass. It is noticeable that biomass-derived carbon materials vary in shape and degree of carbonization depending on their precursor materials. These materials are applied as anode materials to measure the electrochemical performance. The specific capacities of rice husk-, chetnut-, tea bag-, and coffee ground-derived carbon materials are evaluated as 65.8, 80.2, 90.6, and 104.7 mAh g-1 at 0.2C. Notably, coffee ground-based carbon exhibited the highest specific capacity owing to the difference in elemental composition and the degree of carbonization. Conclusively, this study suggests the possibility of utilizing as energy storage devices by employing various plant-based biomass into active materials for anodes.