• Title/Summary/Keyword: Carbon Agglomerates

Search Result 16, Processing Time 0.018 seconds

Generation of Model Diesel Particles by Spark Discharge and Hydrocarbon Condensation

  • Kim, Hak-Joon;Kim, Jin-Ho;Choi, Young-Joo;Oh, Hyen-Chul;Chu, Jung-Bum;Kim, Sang-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1972-1979
    • /
    • 2006
  • This study was conducted in order to generate model particles which were similar to particles in diesel emission. Spark discharge was used for carbon agglomerates and hydrocarbon condensation for particles that consist of carbon agglomerates and hydrocarbon. The size of the carbon agglomerates, whose mean size were 30 and 70 nm, ranged between 15 and 200 nm, and the total number concentration of the particles ranged from 3 to $5{\times}10^7#/cm^3$ as the controllable variables in spark discharge generator changed. The result of the hydrocarbon condensation experiment showed that the final sizes of the particles enlarged by condensation did not depend on the initial sizes, but the maximum condensational growth of carbon agglomerates by dodecane ($C_{12}H_{26}$) condensation was 112 times the initial size of 40 nm, while the size of the agglomerates by benzene ($C_6H_6$) was 3.25 times its initial size.

Effect of Interphase Modulus and Nanofiller Agglomeration on the Tensile Modulus of Graphite Nanoplatelets and Carbon Nanotube Reinforced Polypropylene Nanocomposites

  • Karevan, Mehdi;Pucha, Raghuram V.;Bhuiyan, Md.A.;Kalaitzidou, Kyriaki
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.325-331
    • /
    • 2010
  • This study investigates the effect of filler content (wt%), presence of interphase and agglomerates on the effective Young's modulus of polypropylene (PP) based nanocomposites reinforced with exfoliated graphite nanoplatelets ($xGnP^{TM}$) and carbon nanotubes (CNTs). The Young's modulus of the composites is determined using tensile testing based on ASTM D638. The reinforcement/polymer interphase is characterized in terms of width and mechanical properties using atomic force microscopy which is also used to investigate the presence and size of agglomerates. It is found that the interphase has an average width of ~30 nm and modulus in the range of 5 to 12 GPa. The Halpin-Tsai micromechanical model is modified to account for the effect of interphase and filler agglomerates and the model predictions for the effective modulus of the composites are compared to the experimental data. The presented results highlight the need of considering various experimentally observed filler characteristics such as agglomerate size and aspect ratio and presence and properties of interphase in the micromechanical models in order to develop better design tools to fabricate multifunctional polymer nanocomposites with engineered properties.

Measurement of Carbon Nanotube Agglomerates Size and Shape in Dilute Phase of a Fluidized Bed (유동층 반응기 희박상 내 탄소나노튜브 응집체의 크기 및 형상 측정)

  • Kim, Sung Won
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.646-651
    • /
    • 2017
  • Size and shape of carbon nanotube (CNT) agglomerates in the dilute phase of a bubbling fluidized bed ($0.15m\;i.d{\times}2.6m\;high$) have been determined by the laser sheet technique. Axial solid holdup distribution of the CNT particles showed S curve with dense phase and dilute phase in bubbling fluidization regime. Heywood diameter and Feret diameter of the CNT agglomerates in the dilute phase of bubbling fluidized bed increased with increasing gas velocity. The CNT particle number in the agglomerates increased with increasing of gas velocity. Aspect ratio increased and circularity, roundness and solidity decreased with increasing of gas velocity. A possible mechanism of agglomerates formation was proposed based on the obtained information.

Carbon nanospheres synthesized via solution combustion method: their application as an anode material and catalyst for hydrogen production

  • Dhand, Vivek;Rao, M. Venkateswer;Prasad, J.S.;Mittal, Garima;Rhee, Kyong Yop;Kim, Hyeon Ju;Jung, Dong Ho
    • Carbon letters
    • /
    • v.15 no.3
    • /
    • pp.198-202
    • /
    • 2014
  • Amorphous agglomerates of carbon nanospheres (CNS) with a diameter range of 10-50 nm were synthesized using the solution combustion method. High-resolution transmission electron microscopy (HRTEM) revealed a densely packed high surface area of $SP^2$-hybridized carbon; however, there were no crystalline structural components, as can be seen from the scanning electron microscopy, HRTEM, X-ray diffraction, Raman spectroscopy, and thermal gravimetric analyses. Electrochemical and thermo catalytic decomposition study results show that the material can be used as a potential electrode candidate for the fabrication of energy storage devices and also for the production of free hydrogen if such devices are used in a fluidized bed reactor loaded with the as-prepared CNS as the catalyst bed.

Visualization of Artificially Deposited Submicron-sized Aerosol Particles on the Surfaces of Leaves and Needles in Trees

  • Yamane, Kenichi;Nakaba, Satoshi;Yamaguchi, Masahiro;Kuroda, Katsushi;Sano, Yuzou;Lenggoro, I. Wuled;Izuta, Takeshi;Funada, Ryo
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.4
    • /
    • pp.275-280
    • /
    • 2012
  • To understand the effect of aerosols on the growth and physiological conditions of trees in forests, it is important to know the state of aerosols that are deposited on the surface of the leaves or needles. In this study, we developed methods of visualization of submicron-sized aerosols that were artificially deposited from the gas-phase or liquid phase onto tree leaves or needles in trees. Firstly, we used field-emission scanning electron microscopy (FE-SEM) to observe black carbon (BC) particles that were artificially sprayed onto the leaves or needles. The distribution of BC particles deposited on the leaves and needles were distinguished based on the size and morphological features of the particles. The distribution and agglomerates size of BC particles differed between two spraying methods of BC particles employed. Secondly, we tried to visualize gold (Au) particles that were artificially sprayed onto the leaves using energy dispersive X-ray spectrometry (EDX) coupled to FE-SEM. We detected the Au particles based on the characteristic X-ray spectrum, which was secondarily generated from the Au particles. In contrast to the case of BC particles, the Au particles did not form agglomerates and were uniformly distributed on the leaf surfaces. The present results show that our methods provide useful information of adsorption and/or behavior of fine particles at the submicron level on the surface of the leaves.

Preparation of Zein Microparticles Using Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 Zein 미립자 제조)

  • Ryu, Jong-Hoon;Lim, Gio-Bin
    • KSBB Journal
    • /
    • v.27 no.4
    • /
    • pp.237-242
    • /
    • 2012
  • In this study, zein microparticles and drug-loaded zein microparticles were prepared using supercritical ASES technique. The effects of operating parameters on particle size and morphology were investigated. ASES-processed zein microparticles consisted of agglomerates of very fine unit particles. As temperature increased, the size of unit particles increased and their morphology became more spherical. The addition of water to the solvents for zein resulted in the formation of more spherical microparticles. The release characteristics of drug-loaded zein microparticles were also studied.

Synthesis of Carbon-Supported Pt-Ru Catalysts using a Flame Spray Pyrolysis Method for Fuel Electrode of Low Temperature Fuel Cell (화염분무열분해 공정을 이용한 저온 연료전지 연료전극용 탄소담지 Pt-Ru 촉매의 제조)

  • Lee, Hyun-Min;Lee, Dong-Geun
    • Particle and aerosol research
    • /
    • v.8 no.2
    • /
    • pp.69-74
    • /
    • 2012
  • This study describes how successfully a conventional flame aerosol synthesis was used to continuously synthesize Pt-Ru catalysts supported by carbon agglomerates. Nearly spherical catalysts produced in the flame were mainly composed of metallic Pt and Ru with the molar ratio of 1:1 and those sizes were controllable from ~1.5 nm to ~2.0 nm. Nevertheless, only Pt peaks were found from X-ray diffraction experiments, suggesting that amorphous-like Ru was well mixed in the crystalline Pt lattices. It was found from Cyclo-voltamograms and CO stripping experiments that the electrochemical properties of the catalysts are at least comparable to that of a conventional commercial sample.

Microencapsulation of Surface-modified Carbon Black by Miniemulsion Polymerization (미니유화중합법에 의한 표면개질된 카본블랙의 마이크로캡슐화)

  • Jang, Heang Sin;Hong, Jinho;Lee, Jeongwoo;Shim, Sang Eun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.669-675
    • /
    • 2008
  • Carbon black has been widely used in composites, tonor resin, and ink materials. Since carbon black readily agglomerates, it is important to disperse carbon black in real applications. Aiming to improve dispersion stability, carbon black was chemically oxidized to possess hydroxyl groups using a phase transfer catalyst at room temperature. The modified carbon black (CB-OH) was grafted by a silane coupling agent, p-methylacryloxypropyltrimethoxysilane, to carry teminal vinyl groups. The modified carbon black was subsequently used in miniemulsion polymerization to achieve encapsulted core-shell structure. Finally, well-encapsulated carbon black by polymer was obtained in the size range of 100-500 nm. Throughout the polymerization, the effects of surface modification, types of monomers, initiators, and emulsifiers were investigated.

A Study on the Effect of Petroleum Resin on Vibration Damping Characteristics of Natural Rubber Composites

  • Yun, Yu Mi;Lee, Jin Hyok;Choi, Myoung Chan;Kim, Jung Wan;Kang, Hyun Min;Bae, Jong Woo
    • Elastomers and Composites
    • /
    • v.56 no.4
    • /
    • pp.201-208
    • /
    • 2021
  • In this study, the effect of petroleum resin on the mechanical strength, morphology, and vibration damping characteristics of natural rubber (NR) composites was observed. The NR composites plasticized by adding petroleum resin showed decreased hardness and mechanical properties. A morphology analysis indicated that as the amount of petroleum resin increased, carbon black aggregates (or agglomerates) observed at the fracture surface decreased, resulting in an improvement in the dispersibility. In addition, as 20 phr of petroleum resin was added, the effective damping temperature range increased by approximately 11.4%, the hysteresis loss rate increased by 15.2%, and the resilience decreased by 36.6%. Therefore, it was confirmed that the vibration damping characteristics improved with the addition of petroleum resin. This was because the rubber-filler interaction between the NR molecular chain of the NR composite and the carbon black particles improved by the addition of petroleum resin.

Characterization of nano-structure pyrolytic char for smart and sustainable nanomaterials

  • N. K. Karthikeyan;S. Elavenil
    • Advances in nano research
    • /
    • v.16 no.1
    • /
    • pp.53-69
    • /
    • 2024
  • Advancements in the technology of building materials has led to diverse applications of nanomaterials with the aim to monitor concrete structures. While there are myriad instances of the use of nanoparticles in building materials, the production of smart nano cement-composites is often expensive. Thereupon, this research aims to discover a sustainable nanomaterial from tyre waste using the pyrolysis process as part of the green manufacturing circle. Here, Nano Structure Tyre-Char (NSTC) is introduced as a zero-dimension carbon-based nanoparticle. The NSTC particles were characterized using various standard characterization techniques. Several salient results for the NSTC particles were obtained using microscopic and spectroscopic techniques. The size of the particles as well as that of the agglomerates were reduced significantly using the milling process and the results were validated through a scanning electron microscope. The crystallite size and crystallinity were found to be ~35nm and 10.42%, respectively. The direct bandgap value of 5.93eV and good optical conductivity at 786 nm were obtained from the ultra violet visible spectroscopy measurements. The thermal analysis reveals the presence of a substantial amount of carbon, the rate of maximum weight loss, and the two stages of phase transformation. The FT-Raman confirms the presence of carboxyl groups and a ID/IG ratio of 0.83. Water contact angle around 140° on the surface implies the highly hydrophobic nature of the material and its low surface energy. This characteristic process assists to obtain a sustainable nanomaterial from waste tyres, contributing to the development of a smart building material.