Browse > Article
http://dx.doi.org/10.5714/CL.2010.11.4.325

Effect of Interphase Modulus and Nanofiller Agglomeration on the Tensile Modulus of Graphite Nanoplatelets and Carbon Nanotube Reinforced Polypropylene Nanocomposites  

Karevan, Mehdi (G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology)
Pucha, Raghuram V. (G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology)
Bhuiyan, Md.A. (G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology)
Kalaitzidou, Kyriaki (G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology)
Publication Information
Carbon letters / v.11, no.4, 2010 , pp. 325-331 More about this Journal
Abstract
This study investigates the effect of filler content (wt%), presence of interphase and agglomerates on the effective Young's modulus of polypropylene (PP) based nanocomposites reinforced with exfoliated graphite nanoplatelets ($xGnP^{TM}$) and carbon nanotubes (CNTs). The Young's modulus of the composites is determined using tensile testing based on ASTM D638. The reinforcement/polymer interphase is characterized in terms of width and mechanical properties using atomic force microscopy which is also used to investigate the presence and size of agglomerates. It is found that the interphase has an average width of ~30 nm and modulus in the range of 5 to 12 GPa. The Halpin-Tsai micromechanical model is modified to account for the effect of interphase and filler agglomerates and the model predictions for the effective modulus of the composites are compared to the experimental data. The presented results highlight the need of considering various experimentally observed filler characteristics such as agglomerate size and aspect ratio and presence and properties of interphase in the micromechanical models in order to develop better design tools to fabricate multifunctional polymer nanocomposites with engineered properties.
Keywords
Graphite nanoplatelet; Carbon nanotube; Polymer nanocomposites; Modulus;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yasmin, A.; Daniel, I. M. Polymer 2004, 45, 8211.   DOI   ScienceOn
2 Halpin, J. C.; Kardos, J. L. Polym. Eng. Sci. 1976, 16, 344.   DOI   ScienceOn
3 Haggenmueller, R.; Zhou, W.; Fischer, J. E.; Winey, K. I. J. Nanosci. Nanotech. 2003, 3, 105.   DOI   ScienceOn
4 Zhu, J.; Peng, H. Q.; Rodriguez-Macias, F.; Margrave, J. L.; Khabashesku, V. N.; Imam, A. M.; Lozano, K.; Barrera, E. V. Adv. Funct. Mater. 2004, 14, 643.   DOI   ScienceOn
5 Qian, D.; Dickey, E. C.; Andrews, R.; Rantell, T. Appl. Phys. Lett. 2000, 76, 2868.   DOI   ScienceOn
6 Jin, L.; Bower, C.; Zhou, O. Appl. Phys. Lett. 1998, 73, 1197.   DOI   ScienceOn
7 Zacharia, R.; Ulbricht, H.; Hertel, T. Phys. Rev. B 2004, 69, 155406   DOI   ScienceOn
8 Schadler, L. S.; Giannaris, S. C.; Ajayan, P. M. Appl. Phys. Lett. 1998, 73, 3842.   DOI   ScienceOn
9 Ajayan, P. M.; Schadler, L. S.; Giannaris, C.; Rubio, A. Adv. Mater. 2000, 12, 750.   DOI   ScienceOn
10 Kalaitzidou, K.; Fukushima, H.; Drzal, L. T. Compos. Sci. Tech. 2007, 67, 2045.   DOI   ScienceOn
11 Downing, T. D.; Kumar, R.; Cross, W. M.; Kjerengtroen, L.; Kellar, J. J. J.Adhesion Sci. Tech. 2000, 14, 1801.   DOI   ScienceOn
12 Magonov, S. N.; Reneker, D. H. Ann. Rev. Mater. Sci. 1997, 27, 175.   DOI
13 Yu, M. F.; Lourie, O.; Dyer, M. J.; Moloni, K.; Kelly, T. F.; Ruoff, R. S. Science 2000, 287, 637.   DOI   ScienceOn
14 Ciprari, D.; Jacob, K.; Tannenbaum, R. Macromolecules 2006, 39, 6565.   DOI   ScienceOn
15 Halpin, J. C.; Tsai, S. W. "Air Force Technical Report AFML-TR 67-423", 1967.
16 Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Science 2008, 321, 385.   DOI   ScienceOn
17 Scarpa, F.; Adhikari, S.; Phani, A. S. Nanotechnology 2009, 20, 06709.
18 Kalaitzidou, K.; Fukushima, H.; Drzal, L. T. Carbon 2007, 45, 1446.   DOI   ScienceOn
19 Moniruzzaman, M.; Winey, K. I. Macromolecules 2006, 39, 5194.   DOI   ScienceOn
20 Dhakate, S. R.; Sharma, S.; Borah, M.; Mathur, R. B.; Dhami, T. L. Int'l J. Hydrogen Energy 2008, 33, 7146.   DOI   ScienceOn