• Title/Summary/Keyword: Carbapenems

Search Result 40, Processing Time 0.029 seconds

Investigation of ${\beta}$-Lactamase-producing Multidrug-resistant Pseudomonas aeruginosa Isolated from Non-Tertiary Care Hospitals in Korea

  • Sohn, Eui-Suk;Yoo, Jeong-Sik;Lee, Jeom-Kyu;Lee, Kyeong-Min;Chung, Gyung-Tae;Shin, Eun-Shim;Han, Sun-Young;Lee, Sang-Hee;Kim, Joon;Lee, Yeong-Seon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1733-1737
    • /
    • 2007
  • A total of 2,280 nonduplicate clinical isolates of Pseudomonas aeruginosa, obtained nationwide from Korean non-tertiary care hospitals from 2002 to 2005, were identified and their susceptibilities to aminoglycosides, antipseudomonal penicillins, carbapenems, cephalosporins, monobactams, and quinolones were studied, together with their production of ${\beta}$-lactamases. Using disk diffusion and minimum inhibitory concentration tests, it was found that 2.9% of isolates were multidrug-resistant (MDR) P. aeruginosa. An EDTA-disk synergy test, PCR amplification with specifically designed primers, and direct sequencing of the PCR products showed that the $bla_{OXA-10}$, $bla_{VIM-2}$, $bla_{OXA-2}$, $bla_{OXA-17}$, $bla_{PER-1}$, $bla_{SHV-12}$, and $bla_{IMP-1}$ genes were carried by 34.3%, 26.9%, 3.0%,3.0%, 1.5%, 1.5%, and 1.5% of 67 MDR P. aeruginosa isolates, respectively. The prevalence of MDR P. aeruginosa was three-fold higher, compared with that from the United States. More than two types of ${\beta}$-lactamase genes were carried by 10.4% of isolates. The most prevalent ${\beta}$-lactamase genes were $bla_{VIM-2}$ and $bla_{OXA-10}$. This study is the first description of MDR P. aeruginosa trom non-tertiary care hospitals in Korea and the coexistence of the $bla_{VIM-2}$, $bla_{IMP-1}$, or $bla_{PER-1} in these clinical isolates.

Outbreaks of Imipenem-Resistant Acinetobacter baumannii Producing Carbapenemases in Korea

  • Jeong Seok-Hoon;Bae Il-Kwon;Park Kwang-Ok;An Young-Jun;Sohn Seung-Ghyu;Jang Seon-Ju;Sung Kwang-Hoon;Yang Ki-Suk;Lee Kyung-Won;Young Dong-Eun;Lee Sang-Hee
    • Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.423-431
    • /
    • 2006
  • Among 53 Acinetobacter baumannii isolates collected in 2004, nine imipenem-resistant isolates were obtained from clinical specimens taken from patients hospitalized in Busan, Korea. Nine carbapenemase-producing isolates were further investigated in order to determine the mechanisms underlying resistance. These isolates were then analyzed via antibiotic susceptibility testing, microbiological tests of carbapenemase activity, pI determination, transconjugation test, enterobacterial repetitive consensus (ERIC)-PCR, and DNA sequencing. One outbreak involved seven cases of infection by A. baumannii producing OXA-23 ${\beta}-lactamase$, and was found to have been caused by a single ERIC-PCR clone. During the study period, the other outbreak involved two cases of infection by A. baumannii producing IMP-1 ${\beta}-lactamase$. The two clones, one from each of the outbreaks, were characterized via a modified cloverleaf synergy test and an EDTA-disk synergy test. The isoelectric focusing of the crude bacterial extracts detected nitrocefin-positive bands with pI values of 6.65 (OXA-23) and 9.0 (IMP-1). The PCR amplification and characterization of the amplicons via direct sequencing showed that the clonal isolates harbored $bla_{IMP-1}$ or $bla_{oxA-23}$ determinants. The two clones were characterized by a multidrug resistance phenotype that remained unaltered throughout the outbreak. This resistance encompassed penicillins, extended-spectrum cephalosporins, carbapenems, monobactams, and aminoglycosides. These results appear to show that the imipenem resistance observed among nine Korean A. baumannii isolates could be attributed to the spread of an IMP-lor OXA-23-producing clone. Our microbiological test of carbapenemase activity is a simple method for the screening of clinical isolates producing class D carbapenemase and/or class B $metallo-{\beta}-lactamase$, in order both to determine their clinical impact and to prevent further spread.

Impact of antimicrobial resistance in the $21^{st}$ century

  • Song, Jae-Hoon
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.04a
    • /
    • pp.3-6
    • /
    • 2000
  • Antimicrobial resistance has been a well-recognized problem ever since the introduction of penicillin into clinical use. History of antimicrobial development can be categorized based on the major antibiotics that had been developed against emerging resistant $pathogens^1$. In the first period from 1940 to 1960, penicillin was a dominating antibiotic called as a "magic bullet", although S.aureus armed with penicillinase led antimicrobial era to the second period in 1960s and 1970s. The second stage was characterized by broad-spectrum penicillins and early generation cephalosporins. During this period, nosocomial infections due to gram-negative bacilli became more prevalent, while those caused by S.aureus declined. A variety of new antimicrobial agents with distinct mechanism of action including new generation cephalosporins, monobactams, carbapenems, ${\beta}$-lactamase inhibitors, and quinolones characterized the third period from 1980s to 1990s. However, extensive use of wide variety of antibiotics in the community and hospitals has fueled the crisis in emerging antimicrobial resistance. Newly appeared drug-resistant Streptococcus pneumoniae (DRSP), vancomycin-resistant enterococci (VRE), extended-spectrum ${\beta}$-lactamase-producing Klebsiella, and VRSA have posed a serious threat in many parts of the world. Given the recent epidemiology of antimicrobial resistance and its clinical impact, there is no greater challenge related to emerging infections than the emergence of antibiotic resistance. Problems of antimicrobial resistance can be amplified by the fact that resistant clones or genes can spread within or between the species as well as to geographically distant areas which leads to a global concern$^2$. Antimicrobial resistance is primarily generated and promoted by increased use of antimicrobial agents. Unfortunately, as many as 50 % of prescriptions for antibiotics are reported to be inappropriate$^3$. Injudicious use of antibiotics even for viral upper respiratory infections is a universal phenomenon in every part of the world. The use of large quantities of antibiotics in the animal health industry and farming is another major factor contributing to selection of antibiotic resistance. In addition to these background factors, the tremendous increase in the immunocompromised hosts, popular use of invasive medical interventions, and increase in travel and mixing of human populations are contributing to the resurgence and spread of antimicrobial resistance$^4$. Antimicrobial resistance has critical impact on modem medicine both in clinical and economic aspect. Patients with previously treatable infections may have fatal outcome due to therapeutic failure that is unusual event no more. The potential economic impact of antimicrobial resistance is actually uncountable. With the increase in the problems of resistant organisms in the 21st century, however, additional health care costs for this problem must be enormously increasing.

  • PDF

Four Year Trend of Carbapenem-Resistance in Newly Opened ICUs of a University-Affiliated Hospital of South Korea

  • Kim, Bo-Min;Jeon, Eun-Ju;Jang, Ju-Young;Chung, Jin-Won;Park, Ji-Hoon;Choi, Jae-Chol;Shin, Jong-Wook;Park, In-Won;Choi, Byoung-Whui;Kim, Jae-Yeol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.72 no.4
    • /
    • pp.360-366
    • /
    • 2012
  • Background: Carbapenem-resistance is rapidly evolving among the pathogenic microbes in intensive care units (ICUs). This study aimed to determine annual trend of carbapenem-resistance in the ICU for 4 years, since the opening of a university-affiliated hospital in South Korea. Methods: From 2005 to 2008, microbial samples from consecutive 6,772 patients were screened in the ICU. Three hundred and ninety-seven patients (5.9%) and their first isolates of carbapenem-resistant pathogens were analyzed. Results: The percentage of patients infected with carbapenem-resistant organisms increased constantly during the initial three years (2.3% in 2005, 6.2% in 2006, 7.8% in 2007), then it declined to 6.5% in 2008. Acute Physiology and Chronic Health Evaluation (APACHE) III score at admission was $58.0{\pm}23.5$, the median length of the ICU stay was 37 days, and the mortality rate was 37.5%. The sampling sites were endotracheal suction (67%), catheterized urine (17%), wound (6%) and others (10%). Bacteria with carbapenem-resistance were Pseudomonas aeruginosa (247 isolates, 62%), Acinetobacter baumannii (117 isolates, 30%), Enterobacteriaceae (12 isolates, 3%), and others (21, 5%). Of note, peak isolation of carbapenem-resistant microorganisms in medical ICU was followed by the same epidemic at surgical ICU. Conclusion: Taken together, carbapenem-resistant pathogens are of growing concern in the ICU.

First Detection of $bla_{IMP-1}$ in Clinical Isolate Multiresistant Acinetobacter baumannii from Korea

  • Jeong Seok-Hoon;Bae Il-Kwon;Sohn Seung-Ghyu;Park Kwang-Ok;An Young-Jun;Sung Kwang-Hoon;Jang Seon-Ju;Heo Myong-Jin;Yang Ki-Suk;Lee Sang-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1377-1383
    • /
    • 2006
  • Among 46 Acinetobacter baumannii isolates collected in 2004, two imipenem-resistant isolates were obtained from clinical specimens taken from patients hospitalized in Busan, Republic of Korea. Two carbapenemase-producing isolates were further investigated to determine the mechanism of resistance. These isolates were analyzed by antibiotic susceptibility testing, microbiological tests of carbapenemase activity, determination of pI, transconjugation test, enterobacterial repetitive consensus (ERIC)-PCR, and DNA sequencing. Two cases of infection by A. baumannii producing the IMP-1 ${\beta}$-lactamase were detected. The isolates were characterized by a modified cloverleaf synergy test and EDTA-disk synergy test. Isoelectric focusing of crude bacterial extracts revealed nitrocefin-positive bands with a pI value of 9.0. PCR amplification and characterization of the amplicons by direct sequencing indicated that the isolates carried a $bla_{IMP-l}$ determinant. The isolates were characterized by a multidrug resistance phenotype, including penicillins, extended-spectrum cephalosporins, carbapenems, and aminoglycosides. These results indicate that the observed imipenem resistance of two Korean A. baumannii isolates was due to the spread of an IMP-1-producing clone. Our microbiological test of carbapenemase activity is simple to screen class B metallo-${\beta}$-lactamase-producing clinical isolates to determine their clinical impact and to prevent further spread. This study shows that the $bla_{IMP-l}$ resistance determinant, which is emerging in Korea, may become an emerging therapeutic problem, since clinicians are advised not to use extended-spectrum cephalosporins, imipenem, and aminoglycosides. This observation emphasizes the importance of having effective control measures in Asian hospitals, such as early detection of colonized patients, isolation procedures, and a judicious use of antibiotics.

Molecular Epidemiology of Metallo-β-lactamase Producing Pseudomonas aeruginosa Clinical Isolates (임상에서 분리된 Metallo-β-lactamase 생성 Pseudomonas aeruginosa의 분자역학)

  • Choi, Myung-Won
    • Journal of Life Science
    • /
    • v.22 no.9
    • /
    • pp.1268-1276
    • /
    • 2012
  • The emergence and dissemination of carbapenem-resistant bacteria have resulted in limitations of antibiotic treatment and potential outbreaks of metallo-${\beta}$-lactamase (MBL) producing Pseudomonas aeruginosa resistant to carbapenems. In this study, we conducted molecular characterization of the MBL genes of the ${\beta}$-lactam drug-resistant P. aeruginosa and prepared basic data for treatment and prevention of proliferation of antimicrobial-resistant bacterial infections. Forty-two P. aeruginosa isolates of 254 were resistant to imipenem or meropenem. Among the 42 isolates, 28 isolates were positive for the Hodge test, and 23 isolates were positive for the EDTA-disk synergy test (EDST). MBLs were detected in 59.5% (25/42) of P. aeruginosa isolates. Eight isolates harbored $bla_{IMP-6}$, whereas 17 isolates harbored $bla_{VIM-2}$. The $bla_{IMP-6}$ gene was in a class 1 integron containing five gene cassettes: $bla_{IMP-6}$, qac, aacA4, $bla_{OXA-1}$, and aadA1. Some strains that produce IMP-6 and VIM-2 showed epidemiological relationships. The $bla_{IMP-6}$ gene in carbapenem-resistant P. aeruginosa showed an identical pattern to a gene cassette that was reported at a hospital in Daegu, Korea. Therefore, MBL-producing P. aeruginosa is already endemic in the community. We are concerned that the existence of carbapenem-resistant bacteria containing the blaMBL gene may increase pressure on antibiotic selection when treating infections. We believe that we should select appropriate antibiotics based on the antibiotic susceptibility test and continue the research to prohibit the emergence and spread of antibiotics resistant bacteria.

High Prevalence and Genotypic Characterization of Metallo-β-Lactamase (MBL)-Producing Acinetobacter spp. Isolates Disseminated in a Korean Hospital (국내 대학병원에서 분리된 Metallo-β-Lactamase (MBL) 생성 Acinetobacter spp. 분리주의 높은 출현율과 유전형 특징)

  • Yum, Jong Hwa
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.4
    • /
    • pp.444-452
    • /
    • 2019
  • Carbapenem resistance, mediated by the major acquired metallo-β-lactamase (MBL) genes, has been increasingly reported, particularly for clinical isolates of Acinetobacter spp. Of the 191 nonduplicate clinical isolates of the carbapenem-nonsusceptible Acinetobacter spp. evaluated, 125 isolates (65.4%) were positive for the modified imipenem or meropenem-Hodge test, and 49 isolates (25.7%) were positive for the imipenem-EDTA+SMA double disk synergy test (DDS). PCR and sequencing of the blaVIM-2-allele and blaIMP-1-allele showed that 29 A. baumannii isolates and 1 A. calcoaceticus isolate had blaVIM-2, whereas 16 A. baumannii isolates and 2 A. calcoaceticus isolates had blaIMP-6; 1 isolate of the A. genomospecies 3 had blaVIM-2 and blaAIM-1. All the above MBL genes belong to class 1 integron. The size of class 1 integron encompassing blaVIM-2 or blaIMP-6 ranges from 2.8 kb to 3.2 kb in clinical isolates of A. baumannii, and 3.2 kb to 3.5 kb in clinical isolates of A. genomospecies 3. blaVIM-2 was most often located first or second in the class 1 integron, and these integrons often included aacA4. Due to dispersion of the MBL-producing Acinetobacter spp. as well as integron, which may encompass various resistance genes, there is an expectation for the increase of multidrug resistant Gram-negative bacteria, including resistance of carbapenems such as imipenem or meropenem. Hence, the development of new antimicrobial agents for treating severe Acinetobacter spp. infections is needed.

Molecular Analysis of Carbapenem-Resistant Pseudomonas aeruginosa Isolated from Patients Hospitalized in Daejeon between 2008 and 2014 Years (대전지역의 입원환자에서 분리된 Carbapenem 내성 Pseudomonas aeruginosa의 분자역학조사(2008년에서 2014년까지))

  • Cho, Hye Hyun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.4
    • /
    • pp.406-413
    • /
    • 2018
  • The emergence of carbapenem resistance among Pseudomonas aeruginosa has become an increasing problem worldwide. In particular, $metallo-{\beta}-lactamases$ (MBLs) are responsible for the high-level resistance to carbapenem. Sequence type 235 (ST235) has been found internationally in a multidrug-resistant clone and is involved in the dissemination of genes encoding IMP-6 and VIM-2. This study examined the prevalence of MBLs and the epidemiological relationship in carbapenem-resistant P. aeruginosa (CRPA) isolates obtained from a tertiary hospital in Daejeon, Korea, between March 2008 and June 2014. The antimicrobial susceptibilities were determined using the disk-diffusion method and PCR and DNA sequencing were used to identify the MBL genes. In addition, an epidemiological relationship was investigated by multilocus sequence typing (MLST). Among the 110 CRPA isolates, 32 isolates (29.1%) were MBL-producers; the major type was IMP-6 (29 isolates, 90.6%). VIM-2 was identified in 3 isolates (9.4%) of ST357. IMP-6-producing isolates were multidrug-resistant (MDR) and belonged to ST235. ST235 (55 isolates, 50.0%) was the clone most frequently detected and has gradually emerged during a seven-year period. To prevent the spread of MDR ST235 P. aeruginosa isolates, the current widespread use of carbapenems needs to be curtailed, and novel continuous monitoring strategies should be developed as soon as possible.

Use of Non-carbapenem Antibiotics in Patients with Urinary Tract Infection Caused by Extended-spectrum Beta-lactamase-producing Enterobacteriaceae (Extended-spectrum β-lactamase 를 생산하는 Enterobacteriaceae 요로감염에서 카바페넴 이외의 항생제 사용 가능성에 대한 고찰)

  • Seo, Yu Bin;Kim, Young Keun;Lee, Jacob;Song, Wonkeun
    • Korean Journal of Healthcare-Associated Infection Control and Prevention
    • /
    • v.21 no.2
    • /
    • pp.50-56
    • /
    • 2016
  • Background: Alternatives to carbapenem are increasingly needed to decrease the usage of carbapenem. We evaluated the possibility of using non-carbapenem antibiotics against urinary tract infections (UTI) caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-PE). Methods: This retrospective study was performed at 2 university hospitals between October 2010 and December 2012. All diagnosed adult cases of ESBL-PE UTI were identified from the microbiological database. The subjects were divided into 3 groups based on the empirical antibiotic classes and susceptibility: carbapenem (C) group, susceptible non-carbapenem (SNC) group, and non-susceptible non-carbapenem (NSNC) group. Results: A total of 84 patients were eligible for analysis. For empirical therapy, 41, 23, and 20 patients were included in the NSNC, SNC, and C empirical groups, respectively. During the empirical therapy, 7 patients (17.1%) in the NSNC group, 18 patients (78.3%) in the SNC group, and 19 patients (78.3%) in the C group experienced clinical improvement. No significant difference was observed between the SNC and C empirical groups (P=0.192). Severe sepsis or shock was the predictor of empirical SNC treatment failure (P=0.048). There was a tendency to use carbapenem as a definite therapy in cases of NSNC. In contrast, empirical SNC was maintained as a definite therapy. Conclusion: SNC could be considered as an alternative to carbapenems for treating ESBL-PE UTI. This strategy might decrease the usage of carbapenem without clinical deterioration. However, it should be noted that SNC therapy may fail in the case of severe sepsis or shock.

Bacterial Contamination and Antimicrobial Resistance of the Surrounding Environment Influencing Health (건강에 영향을 주는 주변환경의 미생물 오염 실태 및 항생제 내성)

  • Lee, Do Kyung;Park, Jae Eun;Kim, Kyung Tae;Jang, Dai Ho;Song, Young Cheon;Ha, Nam Joo
    • Korean Journal of Microbiology
    • /
    • v.50 no.2
    • /
    • pp.101-107
    • /
    • 2014
  • Community-acquired antimicrobial resistant bacteria are an emerging problem world-wide. In Korea, resistant bacteria are more prevalent than in other industrialized countries. The aim of this study was to investigate the isolation frequency of methicillin-resistant staphylococci (MRS), Pseudomonas, and Enterobacteriaceae from surrounding environment (home, colleges, public transportation system and possessions) in Seoul, and to examine the level of drug resistance to 13 antimicrobial agents, which are in wide spread clinical use in Korea, as well as new agent, tigecycline in Enterobacteriaceae isolates. Of total 239 samples, 18 (7.5%) MRS, 10 (4.2%) Pseudomonas, and 30 (12.6%) Entarobacteriaceae were isolated. A total of 5 (2.1%) methicillin-resistant S. aureus (MRSA) were detected in home (2 samples), colleges (1 sample), and et cetera (2 sample). A total of 5 (2.1%) Escherichia coli were detected in in home (1 samples), public transportations (3 sample), and et cetera (1 sample). Resistance to cephalosporins, fluoroquinolones, carbapenems, ${\beta}$-lactams, tetracyclines, and aminoglycosides was found in 71.9%, 71.9%, 68.8%, 68.8%, 50.0%, and 25.0% of 32 Enterobacteriaceae isolates, respectively. Also, resistance rate to trimethoprim/sulfamethoxazole of the isolates was a 43.8%. Moreover, 59.4% of the isolates were resistant to new agent, tigecycline and resistance to all agents tested was observed in 3 isolates. Five E. coli isolates were resistant to most of the agents tested, but some of them were susceptible to ciprofloxacin and gentamicin. This study can serve as a data point for future comparisons of possible changes in antibiotic resistance levels in surrounding environment. And multilateral strategies for preventing the incidence and spread of antibiotic resistance are needed.