Browse > Article
http://dx.doi.org/10.15324/kjcls.2018.50.4.406

Molecular Analysis of Carbapenem-Resistant Pseudomonas aeruginosa Isolated from Patients Hospitalized in Daejeon between 2008 and 2014 Years  

Cho, Hye Hyun (Department of Biomedical Laboratory Science, Daejeon Institute of Science and Technology)
Publication Information
Korean Journal of Clinical Laboratory Science / v.50, no.4, 2018 , pp. 406-413 More about this Journal
Abstract
The emergence of carbapenem resistance among Pseudomonas aeruginosa has become an increasing problem worldwide. In particular, $metallo-{\beta}-lactamases$ (MBLs) are responsible for the high-level resistance to carbapenem. Sequence type 235 (ST235) has been found internationally in a multidrug-resistant clone and is involved in the dissemination of genes encoding IMP-6 and VIM-2. This study examined the prevalence of MBLs and the epidemiological relationship in carbapenem-resistant P. aeruginosa (CRPA) isolates obtained from a tertiary hospital in Daejeon, Korea, between March 2008 and June 2014. The antimicrobial susceptibilities were determined using the disk-diffusion method and PCR and DNA sequencing were used to identify the MBL genes. In addition, an epidemiological relationship was investigated by multilocus sequence typing (MLST). Among the 110 CRPA isolates, 32 isolates (29.1%) were MBL-producers; the major type was IMP-6 (29 isolates, 90.6%). VIM-2 was identified in 3 isolates (9.4%) of ST357. IMP-6-producing isolates were multidrug-resistant (MDR) and belonged to ST235. ST235 (55 isolates, 50.0%) was the clone most frequently detected and has gradually emerged during a seven-year period. To prevent the spread of MDR ST235 P. aeruginosa isolates, the current widespread use of carbapenems needs to be curtailed, and novel continuous monitoring strategies should be developed as soon as possible.
Keywords
CRPA; IMP-6; Multidrug-resistant; ST235; VIM-2;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Pollini S, Maradei S, Pecile P, Olivo G, Luzzaro F, Docquier JD, et al. FIM-1, a new acquired metallo-${\beta}$-lactamase from a Pseudomonas aeruginosa clinical isolate from Italy. Antimicrob Agents Chemother. 2013;57:410-416. http://doi.org/10.1128/AAC.01953-12.   DOI
2 Lee K, Kim MN, Kim JS, Hong HL, Kang JO, Shin JH, et al. Further increases in carbapenem-, amikacin-, and fluoroquinolone-resistant isolates of Acinetobacter spp. and P. aeruginosa in Korea: KONSAR study 2009. Yonsei Med J. 2011;52:793-802. http://doi.org/10.3349/ymj.2011.52.5.793.   DOI
3 Huh K, Kim J, Cho SY, Ha YE, Joo EJ, Kang CI, et al. Continuous increase of the antimicrobial resistance among gram-negative pathogens causing bacteremia: a nationwide surveillance study by the Korean Network for Study on Infectious Diseases (KONSID). Diagn Microbiol Infect Dis. 2013;76:477-482. http://doi.org/10.1016/j.diagmicrobio.2013.04.014.   DOI
4 Lee H, Roh KH, Hong SG, Shin HB, Jeong SH, Song W, et al. In vitro synergistic effects of antimicrobial combinations on extensively drug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii Isolates. Ann Lab Med. 2016;36:138-144. http://doi.org/10.3343/alm.2016.36.2.138.   DOI
5 Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-beta-lactamases: the quiet before the storm? Clin Microbiol Rev. 2005;18:306-325.   DOI
6 Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev. 2007;20:440-458.   DOI
7 Yoo JS, Yang JW, Kim HM, Byeon J, Kim HS, Yoo JI, et al. Dissemination of genetically related IMP-6-producing multidrug-resistant Pseudomonas aeruginosa ST235 in South Korea. Int J Antimicrob Agents. 2012;39:300-304. http://doi.org/10.1016/j.ijantimicag.2011.11.018.   DOI
8 Cho HH, Kwon KC, Sung JY, Koo SH. Prevalence and genetic analysis of multidrug-resistant Pseudomonas aeruginosa ST235 isolated from a hospital in Korea, 2008-2012. Ann Clin Lab Sci. 2013;43:414-419.
9 Wright LL, Turton JF, Livermore DM, Hopkins KL, Woodford N. Dominance of international 'high-risk clones' among metallo-${\beta}$-lactamase-producing Pseudomonas aeruginosa in the UK. J Antimicrob Chemother. 2015;70:103-110. http://doi.org/ 10.1093/jac/dku339.   DOI
10 Kang CI, Kim SH, Kim HB, Park SW, Choe YJ, Oh MD, et al. Pseudomonas aeruginosa bacteremia: risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clin Infect Dis. 2003;37:745-751.   DOI
11 Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis. 2002;34:634-640.   DOI
12 Rossi Goncalves I, Dantas RCC, Ferreira ML, Batistao DWDF, Gontijo-Filho PP, Ribas RM. Carbapenem-resistant Pseudomonas aeruginosa: association with virulence genes and biofilm formation. Braz J Microbiol. 2017;48:211-217. http://doi.org/10.1016/j.bjm.2016.11.004.   DOI
13 Cho HH, Kwon KC, Kim S, Park Y, Koo SH. Association between biofilm formation and antimicrobial resistance in carbapenem-resistant Pseudomonas aeruginosa. Ann Clin Lab Sci. 2018;48:363-368.
14 Lee JH, Lee GS, Lim KH, Eom YB, Kim SM, Kim JB. Patterns of antimicrobial resistance and genotyping of carbapenemase producing imipenem-nonsusceptible Pseudomonas aeruginosa. Korean J Clin Lab Sci. 2010;42:71-80.
15 Bae IK, Suh B, Jeong SH, Wang KK, Kim YR, Yong D, et al. Molecular epidemiology of Pseudomonas aeruginosa clinical isolates from Korea producing ${\beta}$-lactamases with extendedspectrum activity. Diagn Microbiol Infect Dis. 2014;79:373-377. http://doi.org/10.1016/j.diagmicrobio.2014.03.007.   DOI
16 Hrabak J, Cervena D, Izdebski R, Duljasz W, Gniadkowski M, Fridrichova M, et al. Regional spread of Pseudomonas aeruginosa ST357 producing IMP-7 metallo-beta-lactamase in central Europe. J Clin Microbiol. 2011;49:474-475. https://doi.org/10.1128/JCM.00684-10.   DOI
17 McCarthy KL, Jennison A, Wailan AM, Paterson DL. Draft genome sequence of an IMP-7-producing Pseudomonas aeruginosa bloodstream infection isolate from Australia. Genome Announc. 2017;5. http://doi.org/10.1128/genomeA.00596-17.
18 Hammerum AM, Jakobsen L, Hansen F, Stegger M, Sorensen LA, Andersen PS, et al. Characterisation of an IMP-7-producing ST357 Pseudomonas aeruginosa isolate detected in Denmark using whole genome sequencing. Int J Antimicrob Agents. 2015; 45:200-201. https://doi.org/10.1016/j.ijantimicag.2014.11.002.   DOI
19 Seok Y, Bae IK, Jeong SH, Kim SH, Lee H, Lee K. Dissemination of IMP-6 metallo-${\beta}$-lactamase-producing Pseudomonas aeruginosa sequence type 235 in Korea. J Antimicrob Chemother. 2011;66:2791-2796. http://doi.org/10.1093/jac/dkr381.   DOI
20 Choi JY, Kwak YG, Yoo H, Lee SO, Kim HB, Han SH, et al. Trends in the distribution and antimicrobial susceptibility of causative pathogens of device-associated infection in Korean intensive care units from 2006 to 2013: results from the Korean Nosocomial Infections Surveillance System (KONIS). J Hosp Infect. 2016;92:363-371. http://doi.org/10.1016/j.jhin.2015.12.012.   DOI
21 Chen Y, Sun M, Wang M, Lu Y, Yan Z. Dissemination of IMP-6-producing Pseudomonas aeruginosa ST244 in multiple cities in China. Eur J Clin Microbiol Infect Dis. 2014;33:1181-1187. http://doi.org/10.1007/s10096-014-2063-5.   DOI
22 Neyestanaki DK, Mirsalehian A, Rezagholizadeh F, Jabalameli F, Taherikalani M, Emaneini M. Determination of extended spectrum beta-lactamases, metallo-beta-lactamases and AmpCbeta-lactamases among carbapenem resistant Pseudomonas aeruginosa isolated from burn patients. Burns. 2014;40:1556-1561. http://doi.org/10.1016/j.burns.2014.02.010.   DOI
23 Yano H, Kuga A, Okamoto R, Kitasato H, Kobayashi T, Inoue M. Plasmid-encoded metallo-beta-lactamase (IMP-6) conferring resistance to carbapenems, especially meropenem. Antimicrob Agents Chemother. 2001;45:1343-1348.   DOI
24 Jeong JH, Shin KS, Lee JW, Park EJ, Son SY. Analysis of a novel class 1 integron containing metallo-beta-lactamase gene VIM-2 in Pseudomonas aeruginosa. J Microbiol. 2009;47:753-759. http://doi.org/10.1007/s12275-008-0272-2.   DOI
25 Hong JS, Yoon EJ, Lee H, Jeong SH, Lee K. Clonal dissemination of Pseudomonas aeruginosa sequence type 235 isolates carrying $bla_{IMP-6}$ and emergence of $bla_{GES-24}$ and $bla_{IMP-10}$ on novel genomic islands PAGI-15 and -16 in South Korea. Antimicrob Agents Chemother. 2016;60:7216-7223.
26 Wi YM, Choi JY, Lee JY, Kang CI, Chung DR, Peck KR, et al. Emergence of colistin resistance in Pseudomonas aeruginosa ST235 clone in South Korea. Int J Antimicrob Agents. 2017;49: 767-769. http://doi.org/10.1016/j.ijantimicag.2017.01.023.   DOI
27 Mano Y, Saga T, Ishii Y, Yoshizumi A, Bonomo RA, Yamaguchi K, et al. Molecular analysis of the integrons of metallo-${\beta}$-lactamase-producing Pseudomonas aeruginosa isolates collected by nationwide surveillance programs across Japan. BMC Microbiol. 2015;15:41. http://doi.org/10.1186/s12866-015-0378-8.   DOI
28 Pournaras S, Kock R, Mossialos D, Mellmann A, Sakellaris V, Stathopoulos C, et al. Detection of a phylogenetically distinct IMP-type metallo-${\beta}$-lactamase, IMP-35, in a CC235 Pseudomonas aeruginosa from the Dutch-German border region (Euregio). J Antimicrob Chemother. 2013;68:1271-1276. http://doi.org/10.1093/jac/dkt004.   DOI
29 Maatallah M, Cheriaa J, Backhrouf A, Iversen A, Grundmann H, Do T, et al. Population structure of Pseudomonas aeruginosa from five mediterranean countries: evidence for frequent recombination and epidemic occurrence of CC235. PLoS One. 2011;6:e25617. http://doi.org/10.1371/journal.pone.0025617.   DOI
30 Giske CG, Libisch B, Colinon C, Scoulica E, Pagani L, Fuzi M, et al. Establishing clonal relationships between VIM-1-like metallo-beta-lactamase-producing Pseudomonas aeruginosa strains from four European countries by multilocus sequence typing. J Clin Microbiol. 2006;44:4309-4315.   DOI
31 Samuelsen O, Toleman MA, Sundsfjord A, Rydberg J, Leegaard TM, Walder M, et al. Molecular epidemiology of metallo-beta-lactamase-producing Pseudomonas aeruginosa isolates from Norway and Sweden shows import of international clones and local clonal expansion. Antimicrob Agents Chemother. 2010;54:346-352. http://doi.org/10.1128/AAC.00824-09.   DOI
32 Cholley P, Thouverez M, Hocquet D, van der Mee-Marquet N, Talon D, Bertrand X. Most multidrug-resistant Pseudomonas aeruginosa isolates from hospitals in eastern France belong to a few clonal types. J Clin Microbiol. 2011;49:2578-2583. http://doi.org/10.1128/JCM.00102-11.   DOI
33 Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twentieth informational supplement, M100-S20. Wayne, PA: Clinical and Laboratory Standards Institute; 2010.
34 Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70:119-123. http://doi.org/10.1016/j.diagmicrobio.2010.12.002.   DOI
35 Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect.2012;18:268-281.http://doi.org/10.1111/j.1469-0691.2011.03570.x.   DOI