• Title/Summary/Keyword: Capture behavior

Search Result 338, Processing Time 0.019 seconds

Complex Movements of Skipjack Schools Based on Sonar Observations during Pelagic Purse Seining

  • Kim, Yong-Hae
    • Fisheries and Aquatic Sciences
    • /
    • v.10 no.4
    • /
    • pp.220-225
    • /
    • 2007
  • The movements of skipjack schools during purse seine operations were observed by scanning sonar in the Southwest Pacific Ocean in April 2004. Swimming speed and directional changes were analyzed in relation to heading of the purse seine during shooting, speed of the purse seiner and distance to the net. Escaped schools turned clockwise (relative to the heading of the purse seiner during shooting) significantly more frequently than captured schools, who primarily turned counter-clockwise. The swimming speed of a fish school, whether it was caught or escaped, was somewhat related to the ship's speed, but swimming speed did not differ between captured and escaped schools. The behavior of skipjack schools during purse seining consists of very complex movements with changes in swimming speed and direction in relation to the nets or purse seiner. Therefore, these responses of skipjack schools to purse seining can be useful for modeling the capture process of purse seining in relation to fishing conditions.

지진하중에 의한 구조물 파괴형상 변화에 대한 메조스케일 해석

  • Kim, Ju-Whan;Hong, Jung-Wuk;Lim, Yun-Mook
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.413-417
    • /
    • 2005
  • A lattice model of a typical bridge column section is analyzed, and results are presented. The lattice is built as an ensemble of line elements and masses, that can capture strain rate dependency of concrete material. The research mainly breaks up into two parts: First, a micro level analysis of the material is executed, and control parameters of the governing equations are derived by matching the results with the common macroscopic properties of concrete material. Then, the properties exhibited by the micro model, which extends the classical material properties are applied to the mesoscale model. Hence, the analysis of the target structure can be performed. In the mesoscale analysis, ramp-like impulse loads are applied at different velocity, so that the contribution of the material level rate dependency to the global behavior of the structure can be tracked.

  • PDF

Case Variation in Guarani

  • Yang, Jeong-Seok
    • Language and Information
    • /
    • v.14 no.1
    • /
    • pp.93-111
    • /
    • 2010
  • This article is a description of the case variation in Guarani Language, which is a relatively, rarely studied language, and more so about case phenomena. Guarani has two remarkable facts about case. First, it has two overt accusative case markers, which are differentiated by the semantic notion of boundedness as in Jackendoff(1990, 1991). The existence of accusative case markers in Guarani is attested by their behavior in the typical transitive verb sentences, the ability to occur in ECM constructions, and the interpretation of specificity which is parallel to Turkish accusative case marker realization reported in Enc(1991). Second, accusative case forms occur in adjunct positions as well as object positions in Guarani. To capture these peculiar case phenomena, an account based on some recent Minimalist ideas about case checking from Legate(2008), Bowers(2010) is shown to be available.

  • PDF

Stability analysis of porous multi-phase nanocrystalline nonlocal beams based on a general higher-order couple-stress beam model

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.465-476
    • /
    • 2018
  • This article investigates buckling behavior of a multi-phase nanocrystalline nanobeam resting on Winkler-Pasternak foundation in the framework of nonlocal couple stress elasticity and a higher order refined beam model. In this model, the essential measures to describe the real material structure of nanocrystalline nanobeams and the size effects were incorporated. This non-classical nanobeam model contains couple stress effect to capture grains micro-rotations. Moreover, the nonlocal elasticity theory is employed to study the nonlocal and long-range interactions between the particles. The present model can degenerate into the classical model if the nonlocal parameter, and couple stress effects are omitted. Hamilton's principle is employed to derive the governing equations and the related boundary conditions which are solved applying an analytical approach. The buckling loads are compared with those of nonlocal couple stress-based beams. It is showed that buckling loads of a nanocrystalline nanobeam depend on the grain size, grain rotations, porosities, interface, elastic foundation, shear deformation, surface effect, nonlocality and boundary conditions.

Simplified model for analysis of soil-foundation system under cyclic pushover loading

  • Kada, Ouassila;Benamar, Ahmed;Tahakourt, Abdelkader
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.267-275
    • /
    • 2018
  • A numerical study of soil-foundation system under monotonic and cyclic pushover loading is conducted, taking into account both material and geometric nonlinearities. A complete and refined 3D finite element (FE) model, using contact condition and allowing separation between soil and foundation, is implemented and used in order to evaluate the nonlinear relationship between applied vertical forces and induced settlements. Based on the obtained curve, a simplified model is proposed, in which the soil inelasticity is satisfactorily represented by two vertical springs with trilinear behavior law, and the foundation uplifting is insured by gap elements. Results from modeling soil-foundation system supporting a bridge pier have shown that the simplified model is able to capture irreversible settlements induced by cyclic rocking, due to soil inelasticity and vertical loading, as well as large rotations due to foundation uplifting.

A HIGHER ORDER NUMERICAL SCHEME FOR SINGULARLY PERTURBED BURGER-HUXLEY EQUATION

  • Jiwrai, Ram;Mittal, R.C.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.813-829
    • /
    • 2011
  • In this article, we present a numerical scheme for solving singularly perturbed (i.e. highest -order derivative term multiplied by small parameter) Burgers-Huxley equation with appropriate initial and boundary conditions. Most of the traditional methods fail to capture the effect of layer behavior when small parameter tends to zero. The presence of perturbation parameter and nonlinearity in the problem leads to severe difficulties in the solution approximation. To overcome such difficulties the present numerical scheme is constructed. In construction of the numerical scheme, the first step is the dicretization of the time variable using forward difference formula with constant step length. Then, the resulting non linear singularly perturbed semidiscrete problem is linearized using quasi-linearization process. Finally, differential quadrature method is used for space discretization. The error estimate and convergence of the numerical scheme is discussed. A set of numerical experiment is carried out in support of the developed scheme.

Moving Mesh Application for Thermal-Hydraulic Analysis in Cable-In-Conduit-Conductors of KSTAR Superconducting Magnet

  • Yoon, Cheon-Seog;Qiuliang Wang;Kim, Keeman;Jinliang He
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.522-531
    • /
    • 2002
  • In order to study the thermal-hydraulic behavior of the cable-in-conduit-conductor (CICC), a numerical model has been developed. In the model, the high heat transfer approximation between superconducting strands and supercritical helium is adopted. The strong coupling of heat transfer at the front of normal zone generates a contact discontinuity in temperature and density. In order to obtain the converged numerical solutions, a moving mesh method is used to capture the contact discontinuity in the short front region of the normal zone. The coupled equation is solved using the finite element method with the artificial viscosity term. Details of the numerical implementation are discussed and the validation of the code is performed for comparison of the results with thse of GANDALF and QSAIT.

Development of Uni-Axial Bushing Model for the Vehicle Dynamic Analysis Using the Bouc-Wen Hysteretic Model (Bouc-Wen 모델을 이용한 차량동역학 해석용 1축 부싱모델의 개발)

  • Ok, Jin-Kyu;Yoo, Wan-Suk;Sohn, Jeong-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.158-165
    • /
    • 2006
  • In this paper, a new uni-axial bushing model for vehicle dynamics analysis is proposed. Bushing components of a vehicle suspension system are tested to capture the nonlinear and hysteric behavior of the typical rubber bushing elements using the MTS machine. The results of the tests are used to develop the Bouc-Wen bushing model. The Bouc-Wen model is employed to represent the hysteretic characteristics of the bushing. ADAMS program is used for the identification process and VisualDOC program is also used to find the optimal coefficients of the model. Genetic algorithm is employed to carry out the optimal design. A numerical example is suggested to verify the performance of the proposed model.

1/4 Car Vibration Simulation Using an Empirical MR Damper Model (실험적 MR댐퍼 모델을 사용한 1/4 차량 진동 시뮬레이션)

  • Yang, Bo-Suk;Lee, Jong-Seok;Kang, Tae-Ho;Ryu, Sung-Won;Baek, Woon-Kyung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1016-1022
    • /
    • 2005
  • This study is about a semi-active quarter car simulation method including a MR(magneto-rheological) damper. The MR damper was modeled as Spencer model that can capture nonlinear and hysteretic behavior. The parameters of the Spencer model were extracted from a random excitation test and optimum treatment of the test data. Then, a suspension control algorithm based on Sky-hook theory was applied for the quarter car simulation. Also, an experiment was done using a quarter car simulator to confirm the simulation results with the Spencer MR damper model.

Constructional Constraints in English Free Relative Constructions

  • Kim, Jong-Bok
    • Language and Information
    • /
    • v.5 no.1
    • /
    • pp.35-53
    • /
    • 2001
  • As a subtype of English relative clause constructions, free relative constructions like what John ate in I ate what John ate exhibit complicated syntactic and semantic properties. In particular, the constructions have mixed properties of nominal and verbal: they have the internal syntax of sentence and the external syntax of noun phrase. This paper provides a constraint-based approach to these mixed constructions, and shows that simple constructional constraints are enough to capture their complexities. The paper begins by surveying the properties of the constructions. In discusses two types(Specific and nonspecific) of free relatives, their ,lexical restrictions nominal properties and behavior with respect to extraposition, piped piping and stacking Following these it sketches the basic framework of the HPSG(Head-driven Phrase Structure Grammar) which is of relevance in this paper. As the main part, the paper presents a constraint- based analysis in which tight interactions between grammatical constructions and a rich network of inheritance relations play important roles in accounting for the basic as well as complex properties of the constructions is question.

  • PDF