• Title/Summary/Keyword: Capacitive devices

Search Result 78, Processing Time 0.03 seconds

Designing a Mobile User Interface with Grip-Pattern Recognition (파지 형태 감지를 통한 휴대 단말용 사용자 인터페이스 개발)

  • Chang Wook;Kim Kee Eung;Lee Hyunjeong;Cho Joon Kee;Soh Byung Seok;Shim Jung Hyun;Yang Gyunghye;Cho Sung Jung;Park Joonah
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.245-248
    • /
    • 2005
  • This paper presents a novel user interface system which aims at easy controlling of mobile devices. The fundamental concept of the proposed interface is to launch an appropriate function of the device by sensing and recognizing the grip-pattern when the user tries to use the mobile device. To this end, we develop a prototype system which employs capacitive touch sensors covering the housing of the system and a recognition algorithm for offering the appropriate function which suitable for the sensed grip-pattern. The effectiveness and feasibility of the proposed method is evaluated through the test of recognition rate with the collected grip-pattern database.

  • PDF

A Design of Microstrip Directional Coupler with the Improved Directivity Characteristic (개선된 지향성을 갖는 마이크로스트립 방향성 결합기 설계)

  • Kim, Chul-Soo;Lim, Jong-Sik;Kim, Dong-Joo;Ahn, Dal
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.6
    • /
    • pp.548-553
    • /
    • 2004
  • In this paper, single, two, and three-section microstrip directional couplers are implemented for realizing the high directivity characteristics. The achievement of the high directivity with microstrip configuration is carried out by the distributed capacitor to decrease the even and odd mode phase difference. Capacitive compensation is performed by gap coupling of open stub formed in sub-coupled line. Therefore, insertion loss and power handling capability are not affected by the gap coupling. The proposed structure is easy to fabricate and incorporate another microwave device due to the planner microstrip. We designed and fabricated single, two, and three-section directional coupler with 20 ㏈ coupling. In spite of microstrip structure, the capacitive compensation structure shows 30 ㏈, 27 ㏈, and 25 ㏈ of directivity in single, two, and three-section directional couplers, respectively.

Investigation on Electrochemical Property of CNT Fibers and its Non-enzymatic Sensing Performance for Glucose Detection (CNT Fibers의 전기화학적 특성 및 비효소적 글루코스 검출 성능 고찰)

  • Song, Min-Jung
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.159-164
    • /
    • 2021
  • As the attachable-type wearable devices have received considerable interests, the need for the development of high-performance electrode materials of fabric or textiles type is emerging. In this study, we demonstrated the electrochemical property of CNT fibers electrode as a flexible electrode material and its non-enzymatic glucose sensing performance. Surface morphology of CNT fibers was observed by SEM. And the electrochemical characteristics were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. The CNT fibers based sensor exhibited improved sensing performances such as high sensitivity, a wide linear range, and low detection limit due to improved electrochemical properties such as low capacitive current, good electrochemical activity by efficient direct electron transfer between the redox species and the electrode interface. Therefore, this study is expected to be used as a basic research for the development of high performance flexible electrode materials based on CNT fibers.

Three-phase high power wireless transmission system (3상 대용량 무선 전력 전송 시스템)

  • Oh, Jungsik;Lee, Myungjin;Cha, Seungtae;Kim, Juyoung;Lee, Kwangwoon;Park, Taesik
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.195-201
    • /
    • 2017
  • High-power wireless transmission system becomes a key technology for the advance of battery-powered devices. The wireless power transfer devices are currently dominated by the inductive and capacitive wireless power transfer systems, which have relatively low power transmission capacity and low efficiency rather than the wired power transmission. The work presented in this paper proposes an alternative method of high-power transmission system, based on a variable speed motor system with a magnetic coupling. It enables high-capacity power transmission, high efficiency, and low possibility of failures, and the performance of the proposed scheme is verified by simulation and experiments.

Sustain Driver and Reset Circuit for Plasma Display (플라즈마 디스플레이를 위한 서스테인 및 리셋 회로)

  • Kang, Feel-Soon;;Park, Jin-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.685-688
    • /
    • 2005
  • An efficient sustain driver and a useful reset circuit composition technique are proposed for plasma display panel drive. The proposed sustain driver uses a series resonance between an external inductor and a panel to recover the energy dissipated by a capacitive displacement current of PDP. It consists of four switching devices, an inductor, and external capacitors, which supply sustain voltage sources. Although the amplitude of an input voltage source is twice as high as that of conventional sustain drivers, average voltage stress imposed on power switching devices is nearly same in their values. Moreover, the input voltage source can be directly applied for the use of a reset voltage source. Owing to this scheme, the proposed sustain driver and the embedded reset circuit have a simple configuration. The operational principle and design example are given with theoretical analyses. The validity of the proposed drive system is verified through experiments using a prototype equipped with a 7.5-inch-diagonal AC plasma display panel.

  • PDF

Highly Miniaturized and Performed UWB Bandpass Filter Embedded into PCB with SrTiO3 Composite Layer

  • Cheon, Seong-Jong;Park, Jun-Hwan;Park, Jae-Yeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.582-588
    • /
    • 2012
  • In this paper, a highly miniaturized and performed UWB bandpass filter has been newly designed and implemented by embedding all the passive elements into a multi-layered PCB substrate with high dielectric $SrTiO_3$ composite film for 3.1 - 4.75 GHz compact UWB system applications. The high dielectric composite film was utilized to increase the capacitance densities and quality factors of capacitors embedded into the PCB. In order to reduce the size of the filter and avoid parasitic EM coupling between the embedded filter circuit elements, it was designed by using a $3^{rd}$ order Chebyshev circuit topology and a capacitive coupled transformation technology. Independent transmission zeros were also applied for improving the attenuation of the filter at the desired stopbands. The measured insertion and return losses in the passband were better than 1.68 and 12 dB, with a minimum value of 0.78 dB. The transmission zeros of the measured response were occurred at 2.2 and 5.15 GHz resulting in excellent suppressions of 31 and 20 dB at WLAN bands of 2.4 and 5.15 GHz, respectively. The size of the fabricated bandpass filter was $2.9{\times}2.8{\times}0.55(H)mm^3$.

A Capacitor-Charging Power Supply Using a Series-Resonant Three-Level Inverter Topology

  • Song I. H.;Shin H. S.;Choi C. H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.301-303
    • /
    • 2001
  • In this paper we present a Capacitor Charging Power Supply (CCPS) using a series-resonant three-level inverter topology to improve voltage regulation and use semiconductor switches having low blocking voltage capability such as MOSFETs. This inverter can be operated with two modes, Full Power Mode (FPM) and Half Power Mode (HPM). In FPM inverter supplies the high frequency step up transformer with full DC-link voltage and in HPM with half DC-link voltage. HPM switching method will be adopted when CCPS output voltage reaches the preset target value and operates in refresh mode-charge is maintained on the capacitor. In this topology each semiconductor devices blocks a half of the DC-link voltage[2]. A 15kW, 30kV CCPS has been built and will be tested for an electric precipitator application. The CCPS operates from an input voltage of 500VDC and has a variable output voltage between 10 to 30kV and 1kHz repetition rate at 44nF capacitive load [3]. A resonant frequency of 67.9kHz was selected and a voltage regulation of $0.83\%$ has been achieved through the use of half power mode without using the forced cut off the switch current [1]. The theory of operation, circuit topology and test results are given.

  • PDF

A Logic-compatible Embedded DRAM Utilizing Common-body Toggled Capacitive Cross-talk

  • Cheng, Weijie;Das, Hritom;Chung, Yeonbae
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.781-792
    • /
    • 2016
  • This paper presents a new approach to enhance the data retention of logic-compatible embedded DRAMs. The memory bit-cell in this work consists of two logic transistors implemented in generic triple-well CMOS process. The key idea is to use the parasitic junction capacitance built between the common cell-body and the data storage node. For each write access, a voltage transition on the cell-body couples up the data storage levels. This technique enhances the data retention and the read performance without using additional cell devices. The technique also provides much strong immunity from the write disturbance in the nature. Measurement results from a 64-kbit eDRAM test chip implemented in a 130 nm logic CMOS technology demonstrate the effectiveness of the proposed circuit technique. The refresh period for 99.9% bit yield measures $600{\mu}s$ at 1.1 V and $85^{\circ}C$, enhancing by % over the conventional design approach.

Applications of Voltammetry in Lithium Ion Battery Research

  • Kim, Taewhan;Choi, Woosung;Shin, Heon-Cheol;Choi, Jae-Young;Kim, Ji Man;Park, Min-Sik;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.14-25
    • /
    • 2020
  • Li ion battery (LIB) is one of the most remarkable energy storage devices currently available in various applications. With a growing demand for high-performance batteries, the role of electrochemical analysis for batteries, especially, electrode reactions are becoming very important and crucial. Among various analytical methods, cyclic voltammetry (CV) is very versatile and widely used in many fields of electrochemistry. Through CV, it is possible to know electrochemical factors affecting the reaction voltage and reversibility, and furthermore, quantitative analysis on Li+ diffusivity as well as intercalation and capacitive reactions, and also anionic redox reaction. However, the explanation or interpretation of the results of CV is often deficient or controversial. In this mini-review, we briefly introduce the principle of cyclic voltammetry and its applications in LIB to bring a better understanding of the electrochemical reaction mechanisms involved in LIB.

The Design and Implementation of a Control System for TCSC in the KERI Analog Power Simulator

  • Jeon, Jin-Hong;Kim, Kwang-Su;Kim, Ji-Won;Oh, Tae-Kyoo
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.3
    • /
    • pp.129-133
    • /
    • 2004
  • This paper deals with the design and implementation of a TCSC (Thyristor Controlled Series Capacitor) simulator, which is a module for an analog type power system simulator. Principally, it presents configuration of controller hardware/software and its experimental results. An analog type power system simulator consists of numerous power system components, such as various types of generator models, scale-downed transmission line modules, transformer models, switches and FACTS (Flexible AC Transmission System) devices. It has been utilized for the verification of the control algorithm and the study of system characteristics analysis. This TCSC simulator is designed for 50% line compensation rate and considered for damping resister characteristic analysis. Its power rate is three phase 380V 20kVA. For hardware extendibility, its controller is designed with VMEBUS and its main CPU is TMS320C32 DSP (Digital Signal Processor). For real time control and communications, its controller is applied to the RTOS (Real Time Operation System) for multi-tasking. This RTOS is uC/OS-II. The experimental results of capacitive mode and inductive mode operations verify the fundamental operations of the TCSC.