• Title/Summary/Keyword: Capacitive coupled plasma

Search Result 34, Processing Time 0.038 seconds

Effects of the Capacitive Field in an Inductively Coupled Plasma Discharge

  • Choe, HeeHwan
    • Applied Science and Convergence Technology
    • /
    • v.26 no.5
    • /
    • pp.114-117
    • /
    • 2017
  • Plasma characteristics of two-dimensional inductively coupled discharge simulation is investigated. Impedance of an inductively coupled plasma discharge was considered. Voltage drops across antenna coils and current variation between coils made different profiles of plasma characteristics. Importance of the capacitive field effect in some case was analyzed.

Research to Achieve Uniform Plasma in Multi-ground Capacitive Coupled Plasma

  • Park, Gi-Jeong;Lee, Yun-Seong;Yu, Dae-Ho;Lee, Jin-Won;Lee, Jeong-Beom;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.247.1-247.1
    • /
    • 2014
  • The capacitive coupled plasma is used widely in the semiconductor industries. Especially, the uniformity of the industrial plasma is heavily related with defect ratio of devices. Therefore, the industries need the capacitive coupled plasma source which can generate the uniform plasma and control the plasma's uniformity. To achieving the uniformity of the large area plasma, we designed multi-powered electrodes. We controlled the uniformity by controlling the power of each electrode. After this work, we started to research another concept of the plasma device. We make the plasma chamber that has multi-ground electrodes imaginary (CST microwave studio) and simulate the electric field. The shape of the multi-ground electrodes is ring type, and it is same as the shape of the multi-power electrodes that we researched before. The diameter of the side electrode's edge is 300mm. We assumed that the plasma uniformity is related with the impedance of ground electrodes. Therefore we simulated the imaginary chamber in three cases. First, we connected L (inductor) and C (capacitor) at the center of multi-ground electrodes. Second, we changed electric conductivity of multi-ground electrode. Third, we changed the insulator's thickness between the center ground electrode and the side ground electrode. The driving frequency is 2, 13.56 and 100 MHz. We switched our multi-powered electrode system to multi-ground electrode system. After switching, we measured the plasma uniformity after installing a variable vacuum capacitor at the ground line. We investigate the effect of ground electrodes' impedance to plasma uniformity.

  • PDF

A preparation of organic thin films by capacitive coupled plasma polymerization method (내전극 정전 결합형 플라즈마 중합 장치에 의한 유기 박막의 작성)

  • 김종택;박구범;이덕출;윤문수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1990.10a
    • /
    • pp.45-46
    • /
    • 1990
  • In this study, we fabricated Plasma polymerized styrene thin films which used a new capacitive type apparatus. RE Power supply (13.56 MHz) was used and styrene monomer was adopted. After the preparation of thin films the molecular structure of Plasma polymerized styrene films was analyzed by some analyses as IR, FT-IR, Gas chromatography and so on.

Single-phase Resonant Inverter using SiC Power Modules for a Compact High-Voltage Capacitive Coupled Plasma Power Supply

  • Tu, Vo Nguyen Qui;Choi, Hyunchul;Kim, Youngwoo;Lee, Changhee;Yoo, Hyoyol
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.85-86
    • /
    • 2014
  • The paper presents a power supply of atmospheric-pressure plasma reactor based on SiC (Silicon Carbide) MOSFET resonant inverter. Thanks to the capacitive characteristic of capacitive coupling plasma reactor type, the LC series resonant inverter had been applied to take advantages of this topology with the implementation of SiC MOSFET power modules as switching power devices. Designation of gate driver for SiC MOSFET had been introduced by this paper. The 5kVp, 5kW power supply had also been verified by experimental results.

  • PDF

Selective etching of SiO2 using embedded RF pulsing in a dual-frequency capacitively coupled plasma system

  • Yeom, Won-Gyun;Jeon, Min-Hwan;Kim, Gyeong-Nam;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.136.2-136.2
    • /
    • 2015
  • 반도체 제조는 chip의 성능 향상 및 단가 하락을 위해 지속적으로 pattern size가 nano size로 감소해 왔고, capacitor 용량은 증가해 왔다. 이러한 현상은 contact hole의 aspect ratio를 지속적으로 증가시킨바, 그에 따라 최적의 HARC (high aspect ratio contact)을 확보하는 적합한 dry etch process가 필수적이다. 그러나 HARC dry etch process는 많은 critical plasma properties 에 의존하는 매우 복잡한 공정이다. 따라서, critical plasma properties를 적절히 조절하여 higher aspect ratio, higher etch selectivity, tighter critical dimension control, lower P2ID과 같은 plasma characteristics을 확보하는 것이 요구된다. 현재 critical plasma properties를 제어하기 위해 다양한 plasma etching 방법이 연구 되어왔다. 이 중 plasma를 낮은 kHz의 frequency에서 on/off 하는 pulsed plasma etching technique은 nanoscale semiconductor material의 etch 특성을 효과적으로 향상 시킬 수 있다. 따라서 본 실험에서는 dual-frequency capacitive coupled plasma (DF-CCP)을 사용하여 plasma operation 동안 duty ratio와 pulse frequency와 같은 pulse parameters를 적용하여 plasma의 특성을 각각 제어함으로써 etch selectivity와 uniformity를 향상 시키고자 하였다. Selective SiO2 contact etching을 위해 top electrode에는 60 MHz pulsed RF source power를, bottom electrode에는 2MHz pulse plasma를 인가하여 synchronously pulsed dual-frequency capacitive coupled plasma (DF-CCP)에서의 plasma 특성과 dual pulsed plasma의 sync. pulsing duty ratio의 영향에 따른 etching 특성 등을 연구 진행하였다. 또한 emissive probe를 통해 전자온도, OES를 통한 radical 분석으로 critical Plasma properties를 분석하였고 SEM을 통한 etch 특성분석과 XPS를 통한 표면분석도 함께 진행하였다. 그 결과 60%의 source duty percentage와 50%의 bias duty percentage에서 가장 향상된 etch 특성을 얻을 수 있었다.

  • PDF

Fault Detection with OES and Impedance at Capacitive Coupled Plasmas

  • Choe, Sang-Hyeok;Jang, Hae-Gyu;Chae, Hui-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.499-499
    • /
    • 2012
  • This study was evaluated on etcher of capacitive coupled plasmas with OES (Optical Emission Spectroscopy) and impedance by VI probe that are widely used for process control and monitoring at semiconductor industry. The experiment was operated at conventional Ar and C4F8 plasma with variable change such as pressure and addition of gas (Atmospheric Leak: N2 and O2), RF, pressure, that are highly possible to impact wafer yield during wafer process, in order to observe OES and VI Probe signals. The sensitivity change on OES and Impedance by Vi probe was analyzed by statistical method to determine healthy of process. The main goal of this study is to understand unwanted tool performance to eventually improve productive capability. It is important for process engineers to actively adjust tool parameter before any serious problem occurs.

  • PDF

Power Dissipation in a RF Capacitively Coupled Plasma

  • Tran, T.H.;You, S.J.;Kim, J.H.;Seong, D.J.;Jeong, J.R.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.203-203
    • /
    • 2013
  • Low pressure plasmas play a key role in many areas including electronic, aerospace, automotive, biomedical, and toxic waste management industries, and the advantages of the plasma are well known the processing procedure is established. However, the insight behavior of the discharges remains a mystery, even though a simple geometry as capacitive discharges. In this work, we measured RF power dissipation in capacitively coupled plasma (CCP) at various experiment conditions with potential probe and RF current probe. Through the results, we will have a clearer view of the inner nature of the CCP.

  • PDF

CCP and ICP Combination Impedance Matching Device for Uniformity Improvement of Semiconductor Plasma Etching System (반도체 플라즈마 식각 시스템의 균일도 향상을 위한 CCP와 ICP 결합 임피던스정합 장치)

  • Jung, Doo-Yong;Nam, Chang-Woo;Lee, Jong-Ho;Choi, Dae-Kyu;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.274-281
    • /
    • 2010
  • This paper proposes a DFPS (Dual Frequency Power Source) impedance matching device for uniformity improvement of a semiconductor plasma etching system. The DFPS consists of two parts for safe plasma processing on large-area substrates. The first part is an ICP (Inductively Coupled Plasma) for high integration by using ferrite core. The second part is a CCP (Capacitive Coupled Plasma) to control uniformity of whole cells. Proposed DFPS can achieve high productivity improvement required for semiconductor equipment industry. The proposed plasma system is analyzed, simulated and experimentally verified with a matching equipment at 27.12MHz and 400kHz.

Electromagnetic Field Distribution of Electrodeless Fluorescent Lamps (무전극 형광램프의 페라이트 특성변화에 따른 전자계 분포)

  • 김광수;이영환;조주웅;최용성;박대희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.2
    • /
    • pp.79-82
    • /
    • 2004
  • The RF inductive discharge or inductively coupled plasma (ICP) continues to attract growing attention as an effective plasma source in many industrial applications, the best known of which are plasma processing and lighting technicology. Although most practical ICP operate at 13.56 [MHz]and 2.65 [MHz], the trend to reduce the operating frequency is clearly recognizable from recent ICP developments. In an electrodeless fluorescent lamp, the use of a lower operating frequency simplifies and reduces cost of rf matching systems and rf generators and can eliminate capacitive coupling between the inductor coil and plasma, which could be a strong factor in wall erosion and plasma contamination. In this study, the configuration of ferrite and fixture which operates at the frequency of 2.65[MHz]was discussed as functions of the ferrite thickness and distance by using the electromagnetic simulation software (Maxwell 2D).