• Title/Summary/Keyword: Capacitive Leakage Current

Search Result 27, Processing Time 0.024 seconds

Analysis of Key Parameters for Inductively Coupled Power Transfer Systems Realized by Detuning Factor in Synchronous Generators

  • Liu, Jinfeng;Li, Kun;Jin, Ningzhi;Iu, Herbert Ho-Ching
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1087-1098
    • /
    • 2019
  • In this paper, a detuning factor (DeFac) method is proposed to design the key parameters for optimizing the transfer power and efficiency of an Inductively Coupled Power Transfer (ICPT) system with primary-secondary side compensation. Depending on the robustness of the system, the DeFac method can guarantee the stability of the transfer power and efficiency of an ICPT system within a certain range of resistive-capacitive or resistive-inductive loads. A MATLAB-Simulink model of a ICPT system was built to assess the system's main evaluation criteria, namely its maximum power ratio (PR) and efficiency, in terms of different approaches. In addition, a magnetic field simulation model was built using Ansoft to specify the leakage flux and current density. Simulation results show that both the maximum PR and efficiency of the ICPT system can reach almost 70% despite the severe detuning imposed by the DeFac method. The system also exhibited low levels of leakage flux and a high current density. Experimental results confirmed the validity and feasibility of an ICPT system using DeFac-designed parameters.

Design of Compensated Digital Interface Circuits for Capacitive Pressure Sensor (용량형 압력센서용 디지탈 보상 인터페이스 회로설계)

  • Lee, Youn-Hee;Sawada, Kouji;Seo, Hee-Don;Choi, Se-Gon
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.63-68
    • /
    • 1996
  • In order to implement the integrated capacitive pressure sensors, which contains integrated interface circuits to detect the electrical output signal, several main factors that have a bad effect on the characteristics of sensors must be improved, such as parasitic capacitance effects, temperature/thermal drift, and the leakage current of a readout circuitry. This paper describes the novel design of the dedicated CMOS readout circuitry that is consists of two capacitance to frequency converters and 4 bit digital logic compensating circuits. Dividing the oscillation frequency of a sensing sensor by that of reference sensor, this circuit is designed to eliminate the thermal/temperature drift and the effect of the leakage currents, and to access a digital signals to obtain a high signal-to-noise(S/N)ratio. Therefore, the resolution of this circuit can be increased by increasing the number of the digital bits. Digital compensated circuits of this circuits, except for the C-F converters, are fabricated on a FPGA chip, and fundamental performance of the circuits are evaluated.

  • PDF

A Plan to Ensure Safety of Electrical Installation in Empty Houses by Measuring Zero Phase Current (영상전류 측정을 이용한 부재수용가의 전기설비에 대한 안전확보 방안)

  • Lim, Young-Bae;Bae, Seok-Myung;Kim, Young-Seok;Park, Chee-Huyn;Kim, Gi-Hyun;Cho, Sung-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.4
    • /
    • pp.196-201
    • /
    • 2006
  • A electrical fault that may generate an electrical disaster is defined as any abnormal condition caused by reduction in the insulation strength. To find out the abnormal condition, periodical inspections have being performed every 3 years. Recently, the number of empty houses during normal working hours is rising by dramatic increase in the number of nuclear families and double income families. To define the potential risk of the electric installation, measurement of zero phase current has been being considered. But the measured value could not be adapted to an absolute reference to the installation because the measured zero phase current value also contained capacitive leakage current. Therefore, in this paper, the correlation between the condition of the electrical installation and the zero phase current was analyzed. The result focuses on to detect them in a cost efficient way.

Study on Integrated for Capacitive Pressure Sensor (용량성 압력센서의 집적화에 관한 연구)

  • 이윤희
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.1
    • /
    • pp.48-58
    • /
    • 1998
  • For the purpose of designing novel capacitance pressure sensor, several effects on sensitivity such as parasitic capacitance effects, temperature/thermal drift and leakage current have to be eleiminated. This paper proposed the experimental studies on frequency compensation method by electronic circuit technique, C-V converting method with switched capacitor and C-F converting method with schmitt trigger circuit. The third interface circuit by frequency compensation method is composed to eliminate the drift and leakage component by comparision sensing frequency with reference frequency. The signal transmission is realized by digital signal to minimize the influence of noise and high resolution is obtained by means of increasing the number of digital bits. In the fabricated high performance C-V interface, the offset voltage was not appeared, and in case of voltage source, 4.0V, feed back capacitance, 10㎊, the pressure, 0~10 ㎪, the sensitivity of C-V converter is 28 ㎷/㎪.V, the temperature drift characteristic, 0.051 %F.S./$^{\circ}C$ and C-F converter shows -6.6 Hz/pa, 0.078 %F.S./$^{\circ}C$ respectively, relatively good ones.

  • PDF

Switching and Leakage-Power Suppressed SRAM for Leakage-Dominant Deep-Submicron CMOS Technologies (초미세 CMOS 공정에서의 스위칭 및 누설전력 억제 SRAM 설계)

  • Choi Hoon-Dae;Min Kyeong-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.3 s.345
    • /
    • pp.21-32
    • /
    • 2006
  • A new SRAM circuit with row-by-row activation and low-swing write schemes is proposed to reduce switching power of active cells as well as leakage one of sleep cells in this paper. By driving source line of sleep cells by $V_{SSH}$ which is higher than $V_{SS}$, the leakage current can be reduced to 1/100 due to the cooperation of the reverse body-bias. Drain Induced Barrier Lowering (DIBL), and negative $V_{GS}$ effects. Moreover, the bit line leakage which may introduce a fault during the read operation can be eliminated in this new SRAM. Swing voltage on highly capacitive bit lines is reduced to $V_{DD}-to-V_{SSH}$ from the conventional $V_{DD}-to-V_{SS}$ during the write operation, greatly saving the bit line switching power. Combining the row-by-row activation scheme with the low-swing write does not require the additional area penalty. By the SPICE simulation with the Berkeley Predictive Technology Modes, 93% of leakage power and 43% of switching one are estimated to be saved in future leakage-dominant 70-un process. A test chip has been fabricated using $0.35-{\mu}m$ CMOS process to verify the effectiveness and feasibility of the new SRAM, where the switching power is measured to be 30% less than the conventional SRAM when the I/O bit width is only 8. The stored data is confirmed to be retained without loss until the retention voltage is reduced to 1.1V which is mainly due to the metal shield. The switching power will be expected to be more significant with increasing the I/O bit width.

Parasitic Capacitive Housing Effects in a Multi-Lamps Backlight

  • Kim, Sang-Beom;Cho, Mee-Ryoung;Hong, Seong-Moon;Lee, Yong-Kon;Lee, Sang-Heok;Lee, Ji-Hoon;Lee, Joo-Young;Hong, Jin-Woo;Yang, Dong-Wook;Lee, Dea-Heung;Kim, Bong-Soo;Kang, June-Gill;Cho, Guang-Sup
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.639-641
    • /
    • 2003
  • The parasitic capacitance between the high voltage electrodes and the backlight housing causes lowering lamp current, electric power leakage, and leading to lower brightness and efficiency in a multi-lamps backlight. In this study a new center balance swing operation method is introduced to be minimizing those housing effects.

  • PDF

Dual Utility AC Line Voltage Operated Voltage Source and Soft Switching PWM DC-DC Converter with High Frequency Transformer Link for Arc Welding Equipment

  • Morimoto Keiki;Ahmed NabilA.;Lee Hyun-Woo;Nakaoka Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.366-373
    • /
    • 2005
  • This paper presents two new circuit topologies of the dc busline side active resonant snubber assisted voltage source high frequency link soft switching PWM full-bridge dc-dc power converters acceptable for either utility ac 200V-rms or ac 400V-rms input grid. These high frequency switching dc-dc converters proposed in this paper are composed of a typical voltage source-fed full-bridge PWM inverter, high frequency transformer with center tap, high frequency diode rectifier with inductor input filter and dc busline side series switches with the aid of a dc busline parallel capacitive lossless snubber. All the active switches in the full-bridge arms as well as dc busline snubber can achieve ZCS turn-on and ZVS turn-off transition commutation with the aid of a transformer leakage inductive component and consequently the total switching power losses can be effectively reduced. So that, a high switching frequency operation of IGBTs in the voltage source full bridge inverter can be actually designed more than about 20 kHz. It is confirmed that the more the switching frequency of full-bridge soft switching inverter increases, the more soft switching PWM dc-dc converter with a high frequency transformer link has remarkable advantages for its power conversion efficiency and power density implementations as compared with the conventional hard switching PWM inverter type dc-dc power converter. The effectiveness of these new dc-dc power converter topologies can be proved to be more suitable for low voltage and large current dc-dc power supply as arc welding equipment from a practical point of view.