• Title/Summary/Keyword: Capacitance sensor

Search Result 304, Processing Time 0.023 seconds

The Prototype Development II of an Engine Oil Deterioration Sensor Installed Inside an Oil Filter (오일필터 일체형 엔진오일퇴화감지센서 시작품 개발II)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.24 no.4
    • /
    • pp.170-178
    • /
    • 2008
  • In this paper, it is described how the problems appeared at the previous proto type sensor are improved. As changing the pressure and temperature of engine oil in a test rig, the modified sensor is tested. Then, the measured results of capacitance and the corresponding dielectric constants under various temperatures and pressures are shown. It turns out that the electrical signal gotten from the electrodes of newly developed sensor can be more stable under the various operating conditions.

4-Axis Decentralized Control of Magnetic Bearing Equipped whth Collocatd Capacitance Sensor (동위형 축전 센서가 장착된 자기베어링의 4 축 분산식 제어)

  • 신동원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.336-340
    • /
    • 1996
  • This paper presents the development of a collocated capacitance sensor and its application to the decentralized PID controller design for 4-axis magnetic bearing system. The main feature of the sensor is that it is made of a compact printed circuit board (PCB) so that it can be built in to the actuator coil of the magnetic bearing unit. The signal processing unit has been also developed. Then, decentralized PED controller is designed using simplified rotor system model. Finally, the experimental results on the performance of the collocated sensor based decentralized PID controller for a magnetic bearing rotor system is presented.

  • PDF

Analysis of Surface Profile using Gap Sensor (Gap 센서를 이용한 가공물의 표면특성 분석)

  • 송무건;유송민
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.304-308
    • /
    • 2000
  • Surface roughness measurement system with capacitance type gap sensor. Tentative result from the calibration measurement showed the potential applicability of the sensor to the processed specimen. In order to test the sensitivity of the measurement system, several parameters including valley depth, width of the specimen have been changed. Effect of the charge area between sensor and specimen surface has been also analyzed.

  • PDF

Capacitance Enhancement and Evaluation of Gold-Deposited Carbon Nanotube Film Ion-Selective Electrode (금 입자 증착된 탄소나노튜브의 커패시턴스 증가 및 박막형 이온 선택성 전극으로서의 특성 평가)

  • Do Youn Kim;Hanbyeol Son;Hyo-Ryoung Lim
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.310-317
    • /
    • 2023
  • Small-film-type ion sensors are garnering considerable interest in the fields of wearable healthcare and home-based monitoring systems. The performance of these sensors primarily relies on electrode capacitance, often employing nanocomposite materials composed of nano- and sub-micrometer particles. Traditional techniques for enhancing capacitance involve the creation of nanoparticles on film electrodes, which require cost-intensive and complex chemical synthesis processes, followed by additional coating optimization. In this study, we introduce a simple one-step electrochemical method for fabricating gold nanoparticles on a carbon nanotube (Au NP-CNT) electrode surface through cyclic voltammetry deposition. Furthermore, we assess the improvement in capacitance by distinguishing between the electrical double-layer capacitance and diffusion-controlled capacitance, thereby clarifying the principles underpinning the material design. The Au NP-CNT electrode maintains its stability and sensitivity for up to 50 d, signifying its potential for advanced ion sensing. Additionally, integration with a mobile wireless data system highlights the versatility of the sensor for health applications.

Estimation of the State of Folding Structures using a Novel Sensor (종이접기 구조의 자세 파악을 위한 폴딩 센서 개발)

  • Chae, Su-Bin;Jung, Gwang-Pil
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.88-93
    • /
    • 2021
  • In this paper, a folding sensor based on capacitance is proposed. The sensor was developed to sense the length and angle data for the milli-scale actuators without causing any interference to the actuating joints. For the sensing and testing the robotic joint with reducing the cost and complexity aspects of manufacturing, a simple composition was adopted. The sensor comprises a pair of copper tapes, papers, and wires. The complete sensing unit is constructed by bonding the tapes with the papers and soldering the wire to the copper parts. For accuracy, a teensy 4.0 board, which has a 12-bit ADC resolution, is employed. Furthermore, the sensed analog data is not translated into the unit of capacitance for accuracy; however, it is filtered using a low-pass filter and subsequently, a Butter-worth filter. The data obtained demonstrate a periodic waveform, which implies that the data are in good agreement with the hypothesis set prior to the experiments. Compared to other milli-scale sensors, this could be a better option for sensing the length and angle data for milliscale actuators.

Detecting and predicting the crude oil type inside composite pipes using ECS and ANN

  • Altabey, Wael A.
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.4
    • /
    • pp.377-393
    • /
    • 2016
  • The present work develops an expert system for detecting and predicting the crude oil types and properties at normal temperature ${\theta}=25^{\circ}C$, by evaluating the dielectric properties of the fluid transfused inside glass fiber reinforced epoxy (GFRE) composite pipelines, by using electrical capacitance sensor (ECS) technique, then used the data measurements from ECS to predict the types of the other crude oil transfused inside the pipeline, by designing an efficient artificial neural network (ANN) architecture. The variation in the dielectric signatures are employed to design an electrical capacitance sensor (ECS) with high sensitivity to detect such problem. ECS consists of 12 electrodes mounted on the outer surface of the pipe. A finite element (FE) simulation model is developed to measure the capacitance values and node potential distribution of ECS electrodes by ANSYS and MATLAB, which are combined to simulate sensor characteristic. Radial Basis neural network (RBNN), structure is applied, trained and tested to predict the finite element (FE) results of crude oil types transfused inside (GFRE) pipe under room temperature using MATLAB neural network toolbox. The FE results are in excellent agreement with an RBNN results, thus validating the accuracy and reliability of the proposed technique.

Development of an Engine Oil Quality Monitoring System (엔진오일 유전상수 변화량 측정에 의한 엔진오일 품질 모니터링 시스템 개발)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.27 no.3
    • /
    • pp.125-133
    • /
    • 2011
  • The purpose of this study is to develop an engine oil quality monitoring system to warn the abnormal condition of engine oil. To do this, first of all, it is needed a personal controller development to measure the capacitance of a pre-developed engine oil deterioration detection sensor integrated with an oil filter. To measure the capacitance of engine oil in the sensor, it is used the way measuring the electric charging time in a capacitor by impressing DC volt. This method has merits on cost and signal stability. The measured capacitance is compensated by comparing with the one measured by an impedance analyzer. Also, using the dielectric constant gained by an impedance analyzer, the calculating equation of the dielectric constant of engine oil related with the currently developed sensor is decided. Then, the deterioration degree of engine oil is estimated according to the change rate of dielectric constant between green oil and used oil. Finally, using this dielectric constant information together with engine oil temperature and pressure, the currently developed engine oil quality monitoring system is to tell the abnormal state of engine oil.

Development of Plastic Film Type Submersion Sensor (플라스틱 필름형 침수센서 개발)

  • Lee, Young Tae;Kwon, Ik Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.107-111
    • /
    • 2022
  • In this paper, a plastic film type submersion sensor capable of measuring submersion speed was developed. This submersion sensor is designed as a capacitive type, and it is a sensor that outputs the change in capacitance between the electrode of the submersion sensor and the grounded body as a voltage through a C-V(capacitance-voltage) converter. We developed an submersion sensor in which two electrodes of different lengths are connected in parallel to measure the submersion speed accurately by minimizing the influence of noise such as contamination. When both electrodes of the submersion sensor are exposed to water, the rate of change of water level suddenly increases, so the submersion speed is measured by measuring the time to this point. Since the difference in length between the two electrodes of the submersion sensor does not change in any case, it is possible to accurately measure the submersion speed.

Precision in situ Measurement using Non-Contacting Capacitive Sensor with 4-Electrodes (비접촉식 4-전극형 전기용량 센서를 이용한 in situ 정밀측정)

  • Kim, Jae-Yeol;Lee, Lae-Duck;Park, Ki-Hyung;Ma, Sang-Dong;Yang, Dong-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.33-38
    • /
    • 2002
  • To establish the national standard of capacitance, four main electrodes of the cross capacitor which were evaluated to linearity and roundness less the $\pm 1 \mu m$ respectively have to be adjusted symmetrically in an inner cylinder. Four LM shafts with diameter of 5 mm were installed between main electrodes of the cross capacitor, and the electrodes were adjusted, as the first step, by means of the measured capacitance. In the second step, the symmetrical adjustment up to $\pm 1.2\mu m$ was performed by using a ball sensor, ball-type movable sensor, non-contacting capacitive sensor and upper guard sensor which were developed in this project.