Browse > Article
http://dx.doi.org/10.12989/smm.2016.3.4.377

Detecting and predicting the crude oil type inside composite pipes using ECS and ANN  

Altabey, Wael A. (International Institute for Urban Systems Engineering, Southeast University)
Publication Information
Structural Monitoring and Maintenance / v.3, no.4, 2016 , pp. 377-393 More about this Journal
Abstract
The present work develops an expert system for detecting and predicting the crude oil types and properties at normal temperature ${\theta}=25^{\circ}C$, by evaluating the dielectric properties of the fluid transfused inside glass fiber reinforced epoxy (GFRE) composite pipelines, by using electrical capacitance sensor (ECS) technique, then used the data measurements from ECS to predict the types of the other crude oil transfused inside the pipeline, by designing an efficient artificial neural network (ANN) architecture. The variation in the dielectric signatures are employed to design an electrical capacitance sensor (ECS) with high sensitivity to detect such problem. ECS consists of 12 electrodes mounted on the outer surface of the pipe. A finite element (FE) simulation model is developed to measure the capacitance values and node potential distribution of ECS electrodes by ANSYS and MATLAB, which are combined to simulate sensor characteristic. Radial Basis neural network (RBNN), structure is applied, trained and tested to predict the finite element (FE) results of crude oil types transfused inside (GFRE) pipe under room temperature using MATLAB neural network toolbox. The FE results are in excellent agreement with an RBNN results, thus validating the accuracy and reliability of the proposed technique.
Keywords
Electrical capacitance sensor (ECS); Finite Element Method (FEM); crude oil type detection; GFRE composite pipe; Artificial neural network (ANN);
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Al-Tabey, W.A. (2010), "Effect of Pipeline Filling Material on Electrical Capacitance Tomography", Proceedings of the International Postgraduate Conference on Engineering (IPCE 2010), Perlis, Malaysia, October 16-17.
2 Al-Tabey, W.A. (2012), Finite Element Analysis in Mechanical Design Using ANSYS: Finite Element Analysis (FEA) Hand Book For Mechanical Engineers With ANSYS Tutorials, LAP Lambert Academic Publishing, Germany, ISBN 978-3-8454-0479-0.
3 Altabey W.A. (2016), "FE and ANN model of ECS to simulate the pipelines suffer from internal corrosion", Struct. Monit. Maint., 3(3), 297-314, DOI: http://dx.doi.org/10.12989/smm.2016.3.3.297.   DOI
4 Altabey W.A., (2016), "The Thermal Effect on Electrical Capacitance Sensor for Two-Phase Flow Monitoring", Struct. Monit. Maint., 3(4), 335-347, DOI: http://dx.doi.org/10.12989/smm.2016.3.4.335.   DOI
5 ANSYS Low-Frequency Electromagnetic analysis Guide, The Electrostatic Module in the Electromagnetic subsection of ANSYS, (2014), ANSYS, inc. Southpointe 275 Technology Drive Canonsburg, PA 15317, Published in the USA.
6 Asencio, K., Bramer-Escamilla, W., Gutierrez, G. and Sanchez, I. (2015), "Electrical capacitance sensor array to measure density profiles of a vibrated granular bed", Powder Technol., 270, 10-19.   DOI
7 Buhmann, M.D. (2003). "Radial basis functions: theory and implementations", Cambridge University Press, Cambridge.
8 Daoye, Y., Bin, Z., Chuanlong, X., Guanghua, T. and Shimin, W. (2009), "Effect of pipeline thickness on electrical capacitance tomography", Proceedings of the 6th International Symposium on Measurement Techniques for Multiphase Flows, Journal of Physics: Conference Series 147, 1-13.
9 Fasching, G.E. and Smith, N.S. (1988), "High Resolution Capacitance Imaging System", US Dept. Energy, 37, DOE/METC-88/4083
10 Fasching, G.E. and Smith, N.S. (1991) "A capacitive system for 3-dimensional imaging of fluidized-beds", Rev. Sci. Instr., 62, 2243-2251   DOI
11 Huang, S.M., Plaskowski, A.B., Xie, C.G. and Beck, M.S, (1989), "Tomographic imaging of two-flow component flow using capacitance sensor", J. Phys. E : Sci. Instrum., 22,173-177.   DOI
12 Jaworski, A.J. and Bolton, G.T. (2000), "The design of an electrical capacitance tomography sensor for use with media of high dielectric permittivity", Meas. Sci. Technol., 11(6), 743-757.   DOI
13 Li, H. and Huang, Z. (2000), "Special measurement technology and application", Zhejiang University Press, Hangzhou.
14 Mohamad, E.J., Rahim, R.A., Leow, P.L., Fazalul, Rahiman, M.H., Marwah, O.M.F., Nor Ayob, N.M., Rahim, H.A. and Mohd Yunus, F.R. (2012), "An introduction of two differential excitation potentials technique in electrical capacitance tomography", J. Sensors Actuators A, 180, 1-10   DOI
15 Mohamad, E.J., Rahim, R.A., Rahiman, M.H.F., Ameran, H.L.M., Muji, S.Z.M. and Marwah, O.M.F. (2016), "Measurement and analysis of water/oil multiphase flow using Electrical Capacitance Tomography sensor", Flow Meas. Instrum., 47, 62-70.   DOI
16 Pei, T. and Wang, W. (2009), "Simulation analysis of sensitivity for electrical capacitance tomography", Proceedings of the 9thInternational Conference on Electronic Measurement & Instruments (ICEMI 2009).
17 Sardeshpande, M.V., Harinarayan, S. and Ranade, V.V. (2015), "Void fraction measurement using electrical capacitance tomography and high speed photography", J. Chem. Eng. Res. Des., 9(4), 1-11.
18 Saudi Aramco (2008), "Setting new standards for 75 years: Our Legacy, Our Future", Annual Review 2008.
19 Valle, Y., Venayagamoorthy, G.K., Mohagheghi, S., Hernandez, J. and Harley, R.G. (2008), "Particle swarm optimization: Basic concepts", Variants and Applications in Power Systems. IEEE Transaction on Evolutionary Computation, 12(2), 171-195.   DOI
20 Xie, C.G., Huang, S.M., Hoyle, B.S., Thorn, R., Lenn, C., Snowden, D. and Beck, M.S. (1992), "Electrical capacitance tomography for flow imaging: system model for development of image reconstruction algorithms and design of primary sensors", IEEE Proceedings-G, 139(1), 89-98.
21 Yang, W.Q. (1997), "Modelling of capacitance sensor", IEEE proceedings: Measurement Science and Technology, 144(5), 203-208.   DOI
22 Yang, W.Q. and York, T.A. (1999), "New AC-based capacitance tomography system", IEEE proceedings:Measurement Science and Technology, 146(1), 47-53.   DOI
23 Yang, W.Q., Beck, M.S. and Byars, M. (1995b), "Electrical capacitance tomography -from design to applications", Meas. Control, 28(9), 261-266   DOI
24 Yang, W.Q., Stott, A.L., Beck, M.S. and Xie, C.G. (1995a), "Development of capacitance tomographic imaging systems for oil pipeline measurements", Rev. Sci. Instrum., 66(8), 4326   DOI
25 Zhang, W., Wang, C., Yang, W. and Wang C. (2014), "Application of electrical capacitance tomography in particulate process measurement - A review", J. Adv. Powder Technol., 25, 174-188.   DOI
26 Saudi Aramco (2014), "Energy is opportunity", Annual Review 2014.