• Title/Summary/Keyword: Canny

Search Result 260, Processing Time 0.037 seconds

Railway sleeper crack recognition based on edge detection and CNN

  • Wang, Gang;Xiang, Jiawei
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.779-789
    • /
    • 2021
  • Cracks in railway sleeper are an inevitable condition and has a significant influence on the safety of railway system. Although the technology of railway sleeper condition monitoring using machine learning (ML) models has been widely applied, the crack recognition accuracy is still in need of improvement. In this paper, a two-stage method using edge detection and convolutional neural network (CNN) is proposed to reduce the burden of computing for detecting cracks in railway sleepers with high accuracy. In the first stage, the edge detection is carried out by using the 3×3 neighborhood range algorithm to find out the possible crack areas, and a series of mathematical morphology operations are further used to eliminate the influence of noise targets to the edge detection results. In the second stage, a CNN model is employed to classify the results of edge detection. Through the analysis of abundant images of sleepers with cracks, it is proved that the cracks detected by the neighborhood range algorithm are superior to those detected by Sobel and Canny algorithms, which can be classified by proposed CNN model with high accuracy.

Real-Time Road Lane Recognition for Autonomous Driving (자율 주행을 위한 실시간 차선 인식)

  • Hwang, In-Chan;Lee, Bong-Hwan;Lee, Kyu-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.94-97
    • /
    • 2009
  • 본 논문에서는 실제 도로 환경에서의 실시간 차선 인식 방법을 제안한다. 전방주시카메라를 활용하여 촬영한 입력영상으로부터 도로영역에 해당하는 관심영역을 추출하고 반복적인 평균 명도를 측정하여 이진화함으로써 차선 특징을 검출하고 YCbCr 변환한 영상에 대한 실험 임계값을 적용하여 중앙선의 특징을 검출하였다. 이에 Canny 알고리즘을 이용한 에지 추출로 허프 변환시의 작업량을 최소화하였으며 허프 변환하여 얻은 차선 후보군으로부터 각도를 기반으로 필터링하여 통계적으로 우선순위가 높은 선분을 차선으로 인식하였다. 또한 실제 도로 환경에서 수집한 동영상으로 실험한 결과 강건한 차선 인식률을 보였다.

Implementation of Linear Detection Algorithm using Raspberry Pi and OpenCV (라즈베리파이와 OpenCV를 활용한 선형 검출 알고리즘 구현)

  • Lee, Sung-jin;Choi, Jun-hyeong;Choi, Byeong-yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.637-639
    • /
    • 2021
  • As autonomous driving research is actively progressing, lane detection is an essential technology in ADAS (Advanced Driver Assistance System) to locate a vehicle and maintain a route. Lane detection is detected using an image processing algorithm such as Hough transform and RANSAC (Random Sample Consensus). This paper implements a linear shape detection algorithm using OpenCV on Raspberry Pi 3 B+. Thresholds were set through OpenCV Gaussian blur structure and Canny edge detection, and lane recognition was successful through linear detection algorithm.

  • PDF

Automatic crack detection of dam concrete structures based on deep learning

  • Zongjie Lv;Jinzhang Tian;Yantao Zhu;Yangtao Li
    • Computers and Concrete
    • /
    • v.32 no.6
    • /
    • pp.615-623
    • /
    • 2023
  • Crack detection is an essential method to ensure the safety of dam concrete structures. Low-quality crack images of dam concrete structures limit the application of neural network methods in crack detection. This research proposes a modified attentional mechanism model to reduce the disturbance caused by uneven light, shadow, and water spots in crack images. Also, the focal loss function solves the small ratio of crack information. The dataset collects from the network, laboratory and actual inspection dataset of dam concrete structures. This research proposes a novel method for crack detection of dam concrete structures based on the U-Net neural network, namely AF-UNet. A mutual comparison of OTSU, Canny, region growing, DeepLab V3+, SegFormer, U-Net, and AF-UNet (proposed) verified the detection accuracy. A binocular camera detects cracks in the experimental scene. The smallest measurement width of the system is 0.27 mm. The potential goal is to achieve real-time detection and localization of cracks in dam concrete structures.

A Study on AI Softwear [Stable Diffusion] ControlNet plug-in Usabilities

  • Chenghao Wang;Jeanhun Chung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.166-171
    • /
    • 2023
  • With significant advancements in the field of artificial intelligence, many novel algorithms and technologies have emerged. Currently, AI painting can generate high-quality images based on textual descriptions. However, it is often challenging to control details when generating images, even with complex textual inputs. Therefore, there is a need to implement additional control mechanisms beyond textual descriptions. Based on ControlNet, this passage describes a combined utilization of various local controls (such as edge maps and depth maps) and global control within a single model. It provides a comprehensive exposition of the fundamental concepts of ControlNet, elucidating its theoretical foundation and relevant technological features. Furthermore, combining methods and applications, understanding the technical characteristics involves analyzing distinct advantages and image differences. This further explores insights into the development of image generation patterns.

Automated Analyses of Ground-Penetrating Radar Images to Determine Spatial Distribution of Buried Cultural Heritage (매장 문화재 공간 분포 결정을 위한 지하투과레이더 영상 분석 자동화 기법 탐색)

  • Kwon, Moonhee;Kim, Seung-Sep
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.551-561
    • /
    • 2022
  • Geophysical exploration methods are very useful for generating high-resolution images of underground structures, and such methods can be applied to investigation of buried cultural properties and for determining their exact locations. In this study, image feature extraction and image segmentation methods were applied to automatically distinguish the structures of buried relics from the high-resolution ground-penetrating radar (GPR) images obtained at the center of Silla Kingdom, Gyeongju, South Korea. The major purpose for image feature extraction analyses is identifying the circular features from building remains and the linear features from ancient roads and fences. Feature extraction is implemented by applying the Canny edge detection and Hough transform algorithms. We applied the Hough transforms to the edge image resulted from the Canny algorithm in order to determine the locations the target features. However, the Hough transform requires different parameter settings for each survey sector. As for image segmentation, we applied the connected element labeling algorithm and object-based image analysis using Orfeo Toolbox (OTB) in QGIS. The connected components labeled image shows the signals associated with the target buried relics are effectively connected and labeled. However, we often find multiple labels are assigned to a single structure on the given GPR data. Object-based image analysis was conducted by using a Large-Scale Mean-Shift (LSMS) image segmentation. In this analysis, a vector layer containing pixel values for each segmented polygon was estimated first and then used to build a train-validation dataset by assigning the polygons to one class associated with the buried relics and another class for the background field. With the Random Forest Classifier, we find that the polygons on the LSMS image segmentation layer can be successfully classified into the polygons of the buried relics and those of the background. Thus, we propose that these automatic classification methods applied to the GPR images of buried cultural heritage in this study can be useful to obtain consistent analyses results for planning excavation processes.

Skew Compensation and Text Extraction of The Traffic Sign in Natural Scenes (자연영상에서 교통 표지판의 기울기 보정 및 덱스트 추출)

  • Choi Gyu-Dam;Kim Sung-Dong;Choi Ki-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.3 no.2 s.5
    • /
    • pp.19-28
    • /
    • 2004
  • This paper shows how to compensate the skew from the traffic sign included in the natural image and extract the text. The research deals with the Process related to the array image. Ail the process comprises four steps. In the first fart we Perform the preprocessing and Canny edge extraction for the edge in the natural image. In the second pan we perform preprocessing and postprocessing for Hough Transform in order to extract the skewed angle. In the third part we remove the noise images and the complex lines, and then extract the candidate region using the features of the text. In the last part after performing the local binarization in the extracted candidate region, we demonstrate the text extraction by using the differences of the features which appeared between the tett and the non-text in order to select the unnecessary non-text. After carrying out an experiment with the natural image of 100 Pieces that includes the traffic sign. The research indicates a 82.54 percent extraction of the text and a 79.69 percent accuracy of the extraction, and this improved more accurate text extraction in comparison with the existing works such as the method using RLS(Run Length Smoothing) or Fourier Transform. Also this research shows a 94.5 percent extraction in respect of the extraction on the skewed angle. That improved a 26 percent, compared with the way used only Hough Transform. The research is applied to giving the information of the location regarding the walking aid system for the blind or the operation of a driverless vehicle

  • PDF

A Combined Hough Transform based Edge Detection and Region Growing Method for Region Extraction (영역 추출을 위한 Hough 변환 기반 에지 검출과 영역 확장을 통합한 방법)

  • N.T.B., Nguyen;Kim, Yong-Kwon;Chung, Chin-Wan;Lee, Seok-Lyong;Kim, Deok-Hwan
    • Journal of KIISE:Databases
    • /
    • v.36 no.4
    • /
    • pp.263-279
    • /
    • 2009
  • Shape features in a content-based image retrieval (CBIR) system are divided into two classes: contour-based and region-based. Contour-based shape features are simple but they are not as efficient as region-based shape features. Most systems using the region-based shape feature have to extract the region firs t. The prior works on region-based systems still have shortcomings. They are complex to implement, particularly with respect to region extraction, and do not sufficiently use the spatial relationship between regions in the distance model In this paper, a region extraction method that is the combination of an edge-based method and a region growing method is proposed to accurately extract regions inside an object. Edges inside an object are accurately detected based on the Canny edge detector and the Hough transform. And the modified Integrated Region Matching (IRM) scheme which includes the adjacency relationship of regions is also proposed. It is used to compute the distance between images for the similarity search using shape features. The experimental results show the effectiveness of our region extraction method as well as the modified IRM. In comparison with other works, it is shown that the new region extraction method outperforms others.

Edge based Interactive Segmentation (경계선 기반의 대화형 영상분할 시스템)

  • Yun, Hyun Joo;Lee, Sang Wook
    • Journal of the Korea Computer Graphics Society
    • /
    • v.8 no.2
    • /
    • pp.15-22
    • /
    • 2002
  • Image segmentation methods partition an image into meaningful regions. For image composition and analysis, it is desirable for the partitioned regions to represent meaningful objects in terms of human perception and manipulation. Despite the recent progress in image understanding, however, most of the segmentation methods mainly employ low-level image features and it is still highly challenging to automatically segment an image based on high-level meaning suitable for human interpretation. The concept of HCI (Human Computer Interaction) can be applied to operator-assisted image segmentation in a manner that a human operator provides guidance to automatic image processing by interactively supplying critical information about object boundaries. Intelligent Scissors and Snakes have demonstrated the effectiveness of human-assisted segmentation [2] [1]. This paper presents a method for interactive image segmentation for more efficient and effective detection and tracking of object boundaries. The presented method is partly based on the concept of Intelligent Scissors, but employs the well-established Canny edge detector for stable edge detection. It also uses "sewing method" for including weak edges in object boundaries, and 5-direction search to promote more efficient and stable linking of neighboring edges than the previous methods.

  • PDF

Coated Tongue Region Extraction using the Fluorescence Response of the Tongue Coating by Ultraviolet Light Source (설태의 자외선 형광 반응을 이용한 설태 영역 추출)

  • Choi, Chang-Yur;Lee, Woo-Beom;Hong, You-Sik;Nam, Dong-Hyun;Lee, Sang-Suk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.181-188
    • /
    • 2012
  • An effective extraction method for extracting a coated tongue is proposed in this paper, which is used as the diagnostic criteria in the tongue diagnosis. Proposed method uses the fluorescence response characteristics of the coated tongue that is occurred by using the ultraviolet light. Specially, this method can solved the previous problems including the issue in the limits of the diagnosis environment and in the objectivity of the diagnosis results. In our method, original tongue image is acquired by using the ultraviolet light, and binarization is performed by thresholding a valley-points in the histogram that corresponds to the color difference of tongue body and tongue coating. Final view image is presented to the oriental doctor, after applying the canny-edge algorithm to the binary image, and edge image is added to the original image. In order to evaluate the performance of the our proposed method, after building a various tongue image, we compared the true region of coated tongue by the oriental doctor's hand with the extracted region by the our method. As a result, the proposed method showed the average 87.87% extraction ratio. The shape of the extracted coated tongue region showed also significantly higher similarity.