Browse > Article
http://dx.doi.org/10.12989/sss.2021.28.6.779

Railway sleeper crack recognition based on edge detection and CNN  

Wang, Gang (College of Mechanical & Electrical Engineering, Wenzhou University)
Xiang, Jiawei (College of Mechanical & Electrical Engineering, Wenzhou University)
Publication Information
Smart Structures and Systems / v.28, no.6, 2021 , pp. 779-789 More about this Journal
Abstract
Cracks in railway sleeper are an inevitable condition and has a significant influence on the safety of railway system. Although the technology of railway sleeper condition monitoring using machine learning (ML) models has been widely applied, the crack recognition accuracy is still in need of improvement. In this paper, a two-stage method using edge detection and convolutional neural network (CNN) is proposed to reduce the burden of computing for detecting cracks in railway sleepers with high accuracy. In the first stage, the edge detection is carried out by using the 3×3 neighborhood range algorithm to find out the possible crack areas, and a series of mathematical morphology operations are further used to eliminate the influence of noise targets to the edge detection results. In the second stage, a CNN model is employed to classify the results of edge detection. Through the analysis of abundant images of sleepers with cracks, it is proved that the cracks detected by the neighborhood range algorithm are superior to those detected by Sobel and Canny algorithms, which can be classified by proposed CNN model with high accuracy.
Keywords
convolutional neural network; edge detection; mathematical morphology operations; neighborhood range algorithm; railway sleeper cracks;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Xia, B., Cao, J., Zhang, X. and Peng, Y. (2020), "Automatic concrete sleeper crack detection using a one-stage detector", Int. J. Intell. Robot. Appl., 4(3), 319-327. https://doi.org/10.1007/s41315-020-00141-4   DOI
2 Chen, S.C. and Chiu, C.C. (2019), "Texture construction edge detection algorithm", Appl. Sci-Basel, 9(5), 897. https://doi.org/10.3390/app9050897   DOI
3 Janeliukstisa, R., Clarkb, A., Papaeliasc, M. and Kaewunruen, S. (2019b), "Flexural cracking-induced acoustic emission peak frequency shift in railway prestressed concrete sleepers", Eng. Struct, 178, 493-505. https://doi.org/10.1016/j.engstruct.2018.10.058   DOI
4 Ada, M., Sevim, B., Yuzer, N. and Ayvaz, Y. (2018), "Assessment of damages on a RC building after a big fire", Adv. Concr. Constr., Int. J., 6(2), 177-197. https://doi.org/10.12989/acc.2018.6.2.177   DOI
5 Goel, N., Kaur, H. and Saxena, J. (2020), "Modified decision based unsymmetric adaptive neighborhood trimmed mean filter for removal of very high density salt and pepper noise", Multimed.Tools Appl., 79(27), 19739-19768. https://doi.org/10.1007/s11042-020-08687-y   DOI
6 Janeliukstis, R., Rucevskis, S. and Kaewunruen, S. (2019a), "Mode shape curvature squares method for crack detection in railway prestressed concrete sleepers", Eng. Fail. Anal., 105, 386-401. https://doi.org/10.1016/j.engfailanal.2019.07.020   DOI
7 Mizuno, K., Terachi, Y., Takagi, K., Izumi, S., Kawaguchi, H. and Yoshimoto, M. (2012), "Architectural study of HOG feature extraction processor for real-time object detection", 2012 IEEE Workshop on Signal Processing Systems, Quebec City, QC, Canada, October, pp. 197-202. https://doi.org/10.1109/SiPS.2012.57
8 Figueira, D., Sousa, C. and Serra Neves, A. (2018), "Winkler spring behavior in FE analyses of dowel action in statically loaded RC cracks", Comput. Concrete, Int. J., 21(5), 593-605. https://doi.org/10.12989/cac.2018.21.5.593   DOI
9 Hsu, C., Lu, C. and Pei, S. (2012), "Image feature extraction in encrypted domain with privacy-preserving SIFT", IEEE T. Image Process., 21, 4593-4607. https://doi.org/10.1109/TIP.2012.2204272   DOI
10 Isik, E., Aydin, M.C. and Buyuksarac, A. (2020), "24 January 2020 Sivrice (Elazig) earthquake damages and determination of earthquake parameters in the region", Earthq. Struct., Int. J., 19(2), 145-156. https://doi.org/10.12989/eas.2020.19.2.145   DOI
11 Beura, S., Majhi, B. and Dash, R. (2015), "Mammogram classification using two dimensional discrete wavelet transform and gray-level co-occurrence matrix for detection of breast cancer", Neurocomputing, 154, 1-14. https://doi.org/10.1016/j.neucom.2014.12.032   DOI
12 Canny, J. (1987), "A computational approach to edge detection", IEEE. T Pattern. Anal., 8, 679-698. 10.1109/TPAMI.1986.4767851   DOI
13 Do, N.T., Mei, Q. and Gul, M. (2019), "Damage assessment of shear-type structures under varying mass effects", Struct. Monit. Maint., Int. J., 6(3), 237-254. https://doi.org/10.12989/smm.2019.6.3.237   DOI
14 Seif, A., Salut, M.M. and Marsono, M.N. (2010), "A hardware architecture of prewitt edge detection", Proceedings of 2010 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology, Kuala Lumpur, Malaysia, November, pp. 99-101.
15 Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012), "ImageNet classification with deep convolutional neural networks", Proceedings of the 26th Annual Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA.
16 Siddhartha, S., Yu, C., Qing, H., Reza, M. and Zhiguo, L. (2018), "Data-driven optimization of railway maintenance for track geometry", Transp. Res. Part C: Emerg. Technol, 90, 34-58. https://doi.org/10.1016/j.trc.2018.02.019   DOI
17 Franca, A.S. and Vassallo, R.F. (2020), "A method of classifying railway sleepers and surface defects in real environment", IEEE Sens. J., 21(10), 11301-11309. https://doi.org/10.1109/JSEN.2020.3026173   DOI
18 Friedl, M.A. and Brodley, C.E. (1997), "Decision tree classification of land cover from remotely sensed data", Remote Sens. Environ., 61, 399-409. https://doi.org/10.1016/S0034-4257(97)00049-7   DOI
19 Jiang, Z. and Xiang, J. (2020), "Method using XFEM and SVR to predict the fatigue life of plate-like structures", Struct. Eng. Mech., Int. J., 73(4), 455-462. https://doi.org/10.12989/sem.2020.73.4.455   DOI
20 Kingma, D.P. and Ba, J. (2014), "Adam: A method for stochastic optimization", arXiv preprint arXiv:1412.6980.
21 Leaman, F., Herz, A., Brinnel, V., Baltes, R. and Clausen, E. (2020), "Analysis of acoustic emission signals during fatigue testing of a M36 bolt using the Hilbert-Huang spectrum", Struct. Monit. Maint., Int. J., 7(1), 13-25. https://doi.org/10.12989/smm.2020.7.1.013   DOI
22 Lecun, Y. and Bengio, Y. (1995), "Convolutional networks for images, speech, and time series", (Arbib, M.A. Eds.), In: The Handbook of Brain Theory and Neural Networks, MIT Press, Cambridge, USA.
23 Torre, V. and Poggio, T.A. (1986), "On edge detection", IEEE T. Pattern. Anal., 8, 147-163.   DOI
24 Simonyan, K. and Zisserman, A. (2014), "Very deep convolutional networks for large-scale image recognition", arXiv preprint arXiv:1409.1556.
25 Sysyn, M., Nabochenko, O., Kovalchuk, V., Gruen, D. and Pentsak, A. (2019), "Improvement of inspection system for common crossings by track side monitoring and prognostics", Struct. Monit. Maint., Int. J., 6(3), 219-235. https://doi.org/10.12989/smm.2019.6.3.219   DOI
26 Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V. and Rabinovich, A. (2014), "Going deeper with convolutions", Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, pp. 1-9.
27 Viswanath, K., Mukherjee, J. and Biswas, P.K. (2011), "Image filtering in the block DCT domain using symmetric convolution", J. Vis. Commun. Image R., 22, 141-152. https://doi.org/10.1016/j.jvcir.2010.11.005   DOI
28 Wang, S. and Xiang, J. (2019), "A minimum entropy deconvolution-enhanced convolutional neural networks for fault diagnosis of axial piston pumps", Soft Comput., 24, 1-15. https://doi.org/10.1007/s00500-019-04076-2   DOI
29 Han, D., Liu, Q. and Fan, W. (2018), "A new image classification method using CNN transfer learning and web data augmentation", Expert. Syst. Appl., 95, 43-56. https://doi.org/10.1016/j.eswa.2017.11.028   DOI
30 Haeri, H., Sarfarazi, V., Zhu, Z. and Moradizadeh, M. (2018), "The effect of ball size on the hollow center cracked disc (HCCD) in Brazilian test", Comput. Concrete, Int. J., 22(4), 373-381. https://doi.org/10.12989/cac.2018.22.4.373   DOI
31 Yella, S., Dougherty, M. and Gupta, N.K. (2009), "Condition monitoring of wooden railway sleepers", Transp. Res. Part C: Emerg. Technol., 17, 38-55. https://doi.org/10.1016/j.trc.2008.06.002   DOI
32 Shih, F.Y. (2010), Image processing and mathematical morphology, Archives of Dermatology.
33 Celik, O., Terrell, T., Gul, M. and Catbas, F.N. (2018), "Sensor clustering technique for practical structural monitoring and maintenance", Struct. Monit. Maint., Int. J., 5(2), 273-295. https://doi.org/10.12989/smm.2018.5.2.273   DOI
34 Yang, Z., Chen, X., Tian, S. and He, Z. (2012), "Multiple damages detection in beam based approximate waveform capacity dimension", Struct. Eng. Mech., Int. J., 41(5), 663. https://doi.org/10.12989/sem.2012.41.5.663   DOI
35 Yang, Z.B., Yu, J.T., Tian, S.H., Chen, X.F. and Xu, G.J. (2018), "A damage localization method based on the singular value decomposition (SVD) for plates", Smart Struct. Syst., Int. J., 22(5), 621-630. https://doi.org/10.12989/sss.2018.22.5.621   DOI
36 Xiang, J., Chen, X. and Yang, L. (2009), "Crack identification in short shafts using wavelet-based element and neural networks", Struct. Eng. Mech., Int. J., 33(5), 543-560. https://doi.org/10.12989/sem.2009.33.5.543   DOI
37 Xiang, J., Jiang, Z., Wang, Y. and Chen, X. (2011), "Study on damage detection software of beam-like structures", Struct. Eng. Mech., Int. J., 39(1), 77-91. https://doi.org/10.12989/sem.2011.39.1.077   DOI
38 Xiang, J., Matsumoto, T., Long, J., Wang, Y. and Jiang, Z. (2012), "A simple method to detect cracks in beam-like structures", Smart Struct. Syst., Int. J., 9(4), 335-353. https://doi.org/10.12989/sss.2012.9.4.335   DOI
39 Xiang, J., Nackenhorst, U., Wang, Y., Jiang, Y., Gao, H. and He, Y. (2014), "A new method to detect cracks in plate-like structures with though-thickness cracks", Smart Struct. Syst., 14(3), 397-418. https://doi.org/10.12989/sss.2014.14.3.397   DOI
40 Xie, X., Xie, G. and Xu, X. (2018), "High precision image segmentation algorithm using SLIC and neighborhood rough set", Multimed.Tools Appl., 77(24), 31525-31543. https://doi.org/10.1007/s11042-018-6150-y   DOI
41 Zaharah, A.B., Aaqib, S., Irina, S. and Andre, G.D. (2019), "Predictive maintenance using tree-based classification techniques: A case of railway switches", Transp. Res. Part C: Emerg. Technol., 101, 35-54. https://doi.org/10.1016/j.trc.2019.02.001   DOI
42 Song, W., Xiang, J. and Zhong, Y. (2017), "Mechanical parameters detection in stepped shafts using the FEM based IET", Smart Struct. Syst., Int. J., 20(4), 473-481. https://doi.org/10.12989/sss.2017.20.4.473   DOI
43 Yin, H., Gong, Y. and Qiu, G. (2020), "Fast and efficient implementation of image filtering using a side window convolutional neural network", Signal Process., 176, 107717. https://doi.org/10.1016/j.sigpro.2020.107717   DOI
44 Zeng, Z., Shuaibu, A.A., Liu, F., Ye, M. and Wang, W. (2020), "Experimental study on the vibration reduction characteristics of the ballasted track with rubber composite sleepers", Constr. Building Mater., 262, 120766. https://doi.org/10.1016/j.conbuildmat.2020.120766   DOI
45 Perez, L. and Wang, J. (2017), "The effectiveness of data augmentation in image classification using deep learning", arXiv preprint arXiv:1712.04621.
46 Prasath, V.S., Thanh, D.N.H. and Hung, N.Q. (2020), "Multiscale gradient maps augmented Fisher information-based image edge detection", IEEE Access, 8, 141104-141110. https://doi.org/10.1109/ACCESS.2020.3013888   DOI
47 Sengsri, P., Ngamkhanong, C., Melo, A.L.O.D., Papaelias, M. and Kaewunruen, S. (2020), "Damage detection in fiber-reinforced foamed urethane composite railway bearers using acoustic emissions", Infrastruct., 5(6), 50. https://doi.org/10.3390/infrastructures5060050   DOI
48 Zhong, Y. and Xiang, J. (2019), "Impact location on a stiffened composite panel using improved linear array", Smart Struct. Syst., Int. J., 24(2), 173-182. https://doi.org/10.12989/sss.2019.24.2.173   DOI
49 Shemirani, A.B., Sarfarazi, V., Haeri, H. and Marji, M.F. (2018), "A discrete element simulation of a punch-through shear test to investigate the confining pressure effects on the shear behaviour of concrete cracks", Comput. Concrete, Int. J., 21(2), 189-197. https://doi.org/10.12989/cac.2018.21.2.189   DOI
50 Shorten, C. and Khoshgoftaar, T.M. (2019), "A survey on image data augmentation for deep learning", J. Big Data, 6(1), 1-48. https://doi.org/10.1186/s40537-019-0197-0   DOI
51 Suykens, J.A.K. and Vandewalle, J. (1999), "Least squares support vector machine classifiers", Neural Process. Lett., 9, 293-300. https://doi.org/10.1023/A:1018628609742   DOI
52 Liu, H., Ding, Y.L., Zhao, H.W., Wang, M.Y. and Geng, F.F. (2020), "Deep learning-based recovery method for missing structural temperature data using LSTM network", Struct. Monit. Maint., Int. J., 7(2), 109-124. https://doi.org/10.12989/smm.2020.7.2.109   DOI
53 Gonzalez, R.C., Woods, R.E. and Eddins, S.L. (2004), Digital Image Processing Using Matlab, Gatesmark Publishing, New York, USA.
54 Gao, W., Zhang, X., Yang, L. and Liu, H. (2010), "An improved sobel edge detection", Proceedings of the 3rd International Conference on Computer Science and Information, Technology, 5, 67-71. https://doi.org/10.1109/ICCSIT.2010.5563693
55 Gao, Y., Liu, X.Y. and Xiang, J.W. (2020), "FEM simulation-based generative adversarial networks to detect bearing faults", IEEE T. Ind. Inform., 16(7), 4961-4971. https://doi.org/10.1109/TII.2020.2968370   DOI
56 Gao, Y., Liu, X.Y., Huang, H.Z. and Xiang, J.W. (2021), "A hybrid of finite element simulation and generative adversarial networks to classify faults in rotor-bearing systems", ISA Transact., 108, 356-366. https://doi.org/10.1016/j.isatra.2020.08.012   DOI