• 제목/요약/키워드: Cancer cell invasion

검색결과 646건 처리시간 0.033초

Forkhead-box A1 regulates tumor cell growth and predicts prognosis in colorectal cancer

  • YOUNG-LAN PARK;SEUNG-HUN KIM;SUN-YOUNG PARK;MIN-WOO JUNG;SANG-YOON HA;JUNG-HO CHOI;DAE-SEONG MYUNG;SUNG-BUM CHO;WAN-SIK LEE;HYUN-SOO KIM;YOUNG-EUN JOO
    • International Journal of Oncology
    • /
    • 제54권6호
    • /
    • pp.2169-2178
    • /
    • 2019
  • Forkhead box A1 (FOXA1) functions as a tumor suppressor gene or an oncogene in various types of cancer; however, the distinct function of FOXA1 in colorectal cancer is unclear. The present study aimed to evaluate whether FOXA1 affects the oncogenic behavior of colorectal cancer cells, and to investigate its prognostic value in colorectal cancer. The impact of FOXA1 on tumor cell behavior was investigated using small interfering RNA and the pcDNA6-myc vector in human colorectal cancer cell lines. To investigate the role of FOXA1 in the progression of human colorectal cancer, an immunohistochemical technique was used to localize FOXA1 protein in paraffin-embedded tissue blocks obtained from 403 patients with colorectal cancer. Tumor cell apoptosis and proliferation were evaluated using a terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay and Ki-67 immunohistochemical staining, respectively. FOXA1 knockdown inhibited tumor cell invasion in colorectal cancer cells, and induced apoptosis and cell cycle arrest. FOXA1 knockdown activated cleaved caspase-poly (ADP-ribose) polymerase, upregulated the expression of p53 upregulated modulator of apoptosis, and downregulated BH3 interacting domain death agonist and myeloid cell leukemia-1, leading to the induction of apoptosis. FOXA1 knockdown increased the phosphorylation level of signal transducer and activator of transcription-3. By contrast, these results were reversed following the overexpression of FOXA1. The overexpression of FOXA1 was associated with differentiation, lymphovascular invasion, advanced tumor stage, depth of invasion, lymph node metastasis and poor survival rate. The mean Ki-67 labeling index value of FOXA1-positive tumors was significantly higher than that of FOXA1-negative tumors. However, no significant association was observed between the expression of FOXA1 and the mean apoptotic index value. These results indicate that FOXA1 is associated with tumor progression via the modulation of tumor cell survival in human colorectal cancer.

Knockdown of Circ_0000144 Suppresses Cell Proliferation, Migration and Invasion in Gastric Cancer Via Sponging MiR-217

  • Ji, Fengcun;Lang, Chao;Gao, Pengfei;Sun, Huanle
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권6호
    • /
    • pp.784-793
    • /
    • 2021
  • Previous studies have uncovered the role of circ_0000144 in various tumors. Here, we investigated the function and mechanism of circ_0000144 in gastric cancer (GC) progression. The expression of circ_0000144 in GC tissues and cells was detected through quantitative real-time polymerase chain reaction (qRT-PCR) method. Gain- and loss-of-function experiments including colony formation, wound healing and transwell assays were performed to examine the role of circ_0000144 in GC cells. Furthermore, western blot was conducted to determine the expressions of epithelial mesenchymal transition (EMT)-related proteins. The interaction between circ_0000144 and miR-217 was analyzed by bioinformatic analysis and luciferase reporter assays. The circ_0000144 expression was obviously upregulated in GC tissues and cells. Silencing of circ_0000144 inhibited cell proliferation, migration and invasion of GC cells, but ectopic expression of circ_0000144 showed the opposite results. Moreover, circ_0000144 sponged miR-217, and rescue assays revealed that silencing miR-217 expression reversed the inhibitory effect of circ_0000144 knockdown on the progress of GC. Our findings reveal that circ_0000144 inhibition suppresses GC cell proliferation, migration and invasion via absorbing miR-217, providing a new biomarker and potential therapeutic target for treatment of GC.

Polygonatum sibiricum component liquiritigenin restrains breast cancer cell invasion and migration by inhibiting HSP90 and chaperone-mediated autophagy

  • Suli Xu;Zhao Ma;Lihua Xing;Weiqing Cheng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제28권4호
    • /
    • pp.379-387
    • /
    • 2024
  • Breast cancer (BC) is most commonly diagnosed worldwide. Liquiritigenin is a flavonoid found in various species of the Glycyrrhiza genus, showing anti-tumor activity. This article was to explore the influences of liquiritigenin on the biological behaviors of BC cells and its underlying mechanism. BC cells were treated with liquiritigenin alone or transfected with oe-HSP90 before liquiritigenin treatment. RT-qPCR and Western blotting were employed to examine the levels of HSP90, Snail, E-cadherin, HSC70, and LAMP-2A. Cell viability, proliferation, migration, and invasion were evaluated by performing MTT, colony formation, scratch, and Transwell assays, respectively. Liquiritigenin treatment reduced HSP90 and Snail levels and enhanced E-cadherin expression as well as inhibiting the proliferation, migration, and invasion of BC cells. Moreover, liquiritigenin treatment decreased the expression of HSC70 and LAMP-2A, proteins related to chaperone-mediated autophagy (CMA). HSP90 overexpression promoted the CMA, invasion, and migration of BC cells under liquiritigenin treatment. Liquiritigenin inhibits HSP90-mediated CMA, thereby suppressing BC cell growth.

Role of Transforming Growth Factor-β in Tumor Invasion and Metastasis

  • Kim, Eun-Sook;Moon, Aree
    • Toxicological Research
    • /
    • 제23권3호
    • /
    • pp.197-205
    • /
    • 2007
  • Cancer metastasis is a major determinant of cancer patient mortality. Mounting evidence favors a strong positive role for $TGF-{\beta}$ in human cancer progression. The complex pattern on cross-talk of $TGF-{\beta}$ and the related other signaling pathways is an important area of investigation that will ultimately contribute to understanding of the bifunctional role of $TGF-{\beta}$ in cancer progression. This review summarizes some of the current understanding of $TGF-{\beta}$ signaling with a major focus in its contribution to the tumor cell invasion and metastasis. Five issues are addressed in this review: (1) $TGF-{\beta}$ signaling, (2) $TGF-{\beta}$ and EMT, (3) $TGF-{\beta}$ and MMP, (4) $TGF-{\beta}$ and Ras, and (5) Role of $TGF-{\beta}$ in invasion and metastasis. Due to the bifunctional cellular effects of $TGF-{\beta}$, as a tumor promoter and a tumor suppressor, more precisely defined $TGF-{\beta}$ signaling pathways need to be elucidated. According to the current literature, $TGF-{\beta}$ is clearly a major factor stimulating tumor progression through a complex spectrum of the interplay and cross-talk between various signaling molecules. Understanding the role of $TGF-{\beta}$ in invasion and metastasis will provide valuable information on establishing strategies to manipulate $TGF-{\beta}$ signaling which should be a high priority for the development of anti-metastatic therapeutics.

6개월간 산삼약침요법을 시행 받은 ⅢB기 편평세포폐암 환자에 대한 증례보고 (A Case Report for Stage ⅢB Squamous Cell Lung Carcinoma Patient Treated with Cultured Wild Ginseng Pharmacopuncture Therapy)

  • 박봉기;조종관;권기록;유화승
    • 대한약침학회지
    • /
    • 제10권3호
    • /
    • pp.143-147
    • /
    • 2007
  • Objective To derive further studies evaluating the effectiveness of Cultured Wild Ginseng Pharmacopuncture (CWGP) Therapy on squamous cell carcinoma as a first line. Methods Three cycles (4 weeks/cycle) of CWGP were administered as a dosage of 10 ml per day. Patient was diagnosed with stage IIIB squamous cell carcinoma and refused all therapy of conventional medicine because of old age and cardiac invasion of tumor. Intensive treatment of CWGP for 3 cycles was done on the patient. Computed Topography (CT) was performed to evaluate the therapeutic efficacy. Results After the intravenous infusion of 2 cycles of CWGP, chest CT revealed the mass size and pleural invasion sustained stable disease. After the point injection of 1 cycle of CWGP, chest CT revealed progressive disease. The disease free survival rate was 1 month. Conclusion This case may provide us the possibility that CWGP offers potential benefits for patients with squamous cell lung carcinoma. But this is a single case study and further case-series research should be compensated.

IDH1 Overexpression Induced Chemotherapy Resistance and IDH1 Mutation Enhanced Chemotherapy Sensitivity in Glioma Cells in Vitro and in Vivo

  • Wang, Ju-Bo;Dong, Dan-Feng;Wang, Mao-De;Gao, Ke
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권1호
    • /
    • pp.427-432
    • /
    • 2014
  • Isocitrate dehydrogenase (IDH) is of great importance in cell metabolism and energy conversion. IDH mutation in glioma cells is reported to be associated with an increased overall survival. However, effects biological behavior of therapy of gliomas are unclear. Here, we investigated the influence of wild-type and mutated IDH genes on glioma cell biological behavior and response to chemotherapy. Relevant mechanisms were further explored. We designed our study on the background of the IDHR132H mutation. Stable cell lines were constructed by transfection. The CCK-8 method was used to assess cell proliferation, flow cytometry for the cell cycle and cell apoptosis, and the transwell method for cell invasion. Nude mouse models were employed to determine tumorigenesis and sensitivity to chemotherapy. Western blotting was used to detect relevant protein expression levels. We found that overexpression of wild IDH1 gene did not cause changes in the cell cycle, apoptosis and invasion ability. However, it resulted in chemotherapy resistance to a high dose of temozolomide (TMZ) in vivo and in vitro. The IDH1 mutation caused cell cycle arrest in G1 stage and a reduction of proliferation and invasion ability, while raising sensitivity to chemotherapy. This may provide an explanation for the better prognosis of IDH1 mutated glioma patients and the relative worse prognosis of their wild-type IDH1 counterparts. We also expect IDH1 mutations may be optimized as new targets to improve the prognosis of glioma patients.

Saxatilin Suppresses Tumor-induced Angiogenesis by Regulating VEGF Expression in NCI-H460 Human Lung Cancer Cells

  • Jang, Yoon-Jung;Kim, Dong-Seok;Jeon, Ok-Hee;Kim, Doo-Sik
    • BMB Reports
    • /
    • 제40권3호
    • /
    • pp.439-443
    • /
    • 2007
  • Tumor growth and metastasis are dependent on angiogenesis, and endothelial cell invasion and migration are apparent means of regulating tumor progression. We report here that saxatilin, a snake venom-derived disintegrin, suppresses the angiogenesis-inducing properties of NCI-H460 human lung cancer cells. Culture supernatants of NCI-H460 cells are able to induce human umbilical vascular endothelial cell (HUVEC) invasion and tube formation. However, treatment of the cancer cells with saxatilin resulted in reduced angiogenic activity of the culture supernatant. This suppressed angiogenic property was found to be associated with the level of vascular endothelial growth factor (VEGF) in the culture supernatant. Further experimental evidence indicated that saxatilin inhibits VEGF production in NCI-H460 cells by affecting hypoxia induced factor-1$\alpha$ (HIF-1$\alpha$) expression via the Akt pathway.

Transglutaminase-2 Is Involved in All-Trans Retinoic Acid-Induced Invasion and Matrix Metalloproteinases Expression of SH-SY5Y Neuroblastoma Cells via NF-κB Pathway

  • Lee, Hye-Ja;Park, Mi-Kyung;Bae, Hyun-Cheol;Yoon, Hee-Jung;Kim, Soo-Youl;Lee, Chang-Hoon
    • Biomolecules & Therapeutics
    • /
    • 제20권3호
    • /
    • pp.286-292
    • /
    • 2012
  • All-trans retinoic acid (ATRA) is currently used in adjuvant differentiation-based treatment of residual or relapsed neuroblastoma (NB). It has been reported that short-term ATRA treatment induces migration and invasion of SH-SY5Y via transglutaminase-2 (Tgase-2). However, the detailed mechanism of Tgase-2's involvement in NB cell invasion remains unclear. Therefore we investigated the role of Tgase-2 in invasion of NB cells using SH-SY5Y cells. ATRA dose-dependently induced the invasion of SH-SY5Y cells. Cystamine (CTM), a well known tgase inhibitor suppressed the ATRA-induced invasion of SH-SY5Y cells in a dose-dependent manner. Matrix metalloproteinase -9 (MMP-9) and MMP-2, well known genes involved in invasion of cancer cells were induced in the ATRA-induced invasion of the SH-SH5Y cells. Treatment of CTM suppressed the MMP-9 and MMP-2 enzyme activities in the ATRA-induced invasion of the SH-SY5Y cells. To confirm the involvement of Tgase-2, gene silencing of Tgase-2 was performed in the ATRA-induced invasion of the SH-SH5Y cells. The siRNA of Tgase-2 suppressed the MMP-9 and MMP-2 activity of the SH-SY5Y cells. MMP-2 and MMP-9 are well known target genes of NF-${\kappa}B$. Therefore the relationship of Tgase-2 and NF-${\kappa}B$ in the ATRA-induced invasion of the SH-SY5Y cells was examined using siRNA and CTM. ATRA induced the activation of NF-${\kappa}B$ in the SH-SY5Y cells and CTM suppressed the activation of NF-${\kappa}B$. Gene silencing of Tgase-2 suppressed the MMP expression by ATRA. These results suggested that Tgase-2 might be a new target for controlling the ATRA-induced invasion of NBs.

Ectopic Overexpression of COTE1 Promotes Cellular Invasion of Hepatocellular Carcinoma

  • Zhang, Hai;Huang, Chang-Jun;Tian, Yuan;Wang, Yu-Ping;Han, Ze-Guang;Li, Xiang-Cheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권11호
    • /
    • pp.5799-5804
    • /
    • 2012
  • Family with sequence similarity 189, member B (FAM189B), alias COTE1, a putative oncogene selected by microarray, for the first time was here found to be significantly up-regulated in hepatocellular carcinoma (HCC) specimens and HCC cell lines. mRNA expression of COTE1 in HCC samples and cell lines was detected by reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR, while protein expression of COTE1 in HCC tissues was assessed by immunohistochemistry. In addition, invasion of HCC cells was observed after overexpressing or silencing COTE1. In the total of 48 paired HCC specimens, compared with the adjacent non-cancer tissues, the expression of COTE1 was up-regulated in 31 (p<0.01). In HCC cell lines, COTE1 expression was significantly higher than in normal human adult liver (p<0.01). Overexpression of COTE1 enhanced HCC-derived LM6 and MHCC-L cellular invasion in vitro. In contrast, COTE1 knockdown via RNAi markedly suppressed these phenotypes, as documented in LM3 and MHCC-H HCC cells. Mechanistic analyses indicated that COTE1 could physically associate with WW domain oxidoreductase (WWOX), a tumor suppressor. COTE1 may be closely correlated with invasion of hepatocellular carcinoma (HCC) cells and thus may serve as an effective target for gene therapy.

구강암편평세포암에서 c-Met 발현여부에 따른 (-)-Epigallocatechin-3-Gallate의 세포사멸 및 종양침습억제효과의 변화분석 (Analysis of (-)-Epigallocatechin-3-Gallate-Induced Apoptosis and Inhibition of Invasiveness in Oral Cavity Carcinoma Squamous Cell Carcinoma According to Expression of c-Met)

  • 신유섭;고윤우;최은창;강성운;황혜숙;추옥성;이한빈;김철호
    • 대한두경부종양학회지
    • /
    • 제27권1호
    • /
    • pp.3-11
    • /
    • 2011
  • Hepatocyte growth factor(HGF) and c-Met play an important role in the control of tumor growth and invasion, and they are known to be good prognostic indicators of patient outcome. Epigallocatechin-3-gallate (EGCG) has been shown to have chemopreventive and therapeutic properties by modulating multiple signal pathways regarding the control of proliferation and invasion of cells. In this study, we evaluated the role of c-Met in EGCG-induced inhibition of invasion and apoptosis in an oral cancer cell line. In KB cells where c-Met was knocked down with siRNA, we performed invasion assay and FACS with Annexin V-FITC/PT staining. In addition, we checked the change of mitochondrial membrane potential(MMP) and the generation of reactive oxygen species(ROS). EGCG-induced inhibition of invasiveness was significantly decreased after the knock-down of c-Met. EGCG-induced apoptosis, MMP change and ROS generation was also reduced in c-Met knock-ed-down KB cells. These results suggest that c-Met is involved in EGCG-induced apoptosis and inhibition of invasiveness of oral cancer cell line.