Browse > Article
http://dx.doi.org/10.5487/TR.2007.23.3.197

Role of Transforming Growth Factor-β in Tumor Invasion and Metastasis  

Kim, Eun-Sook (College of Pharmacy, Duksuhng Women's University)
Moon, Aree (College of Pharmacy, Duksuhng Women's University)
Publication Information
Toxicological Research / v.23, no.3, 2007 , pp. 197-205 More about this Journal
Abstract
Cancer metastasis is a major determinant of cancer patient mortality. Mounting evidence favors a strong positive role for $TGF-{\beta}$ in human cancer progression. The complex pattern on cross-talk of $TGF-{\beta}$ and the related other signaling pathways is an important area of investigation that will ultimately contribute to understanding of the bifunctional role of $TGF-{\beta}$ in cancer progression. This review summarizes some of the current understanding of $TGF-{\beta}$ signaling with a major focus in its contribution to the tumor cell invasion and metastasis. Five issues are addressed in this review: (1) $TGF-{\beta}$ signaling, (2) $TGF-{\beta}$ and EMT, (3) $TGF-{\beta}$ and MMP, (4) $TGF-{\beta}$ and Ras, and (5) Role of $TGF-{\beta}$ in invasion and metastasis. Due to the bifunctional cellular effects of $TGF-{\beta}$, as a tumor promoter and a tumor suppressor, more precisely defined $TGF-{\beta}$ signaling pathways need to be elucidated. According to the current literature, $TGF-{\beta}$ is clearly a major factor stimulating tumor progression through a complex spectrum of the interplay and cross-talk between various signaling molecules. Understanding the role of $TGF-{\beta}$ in invasion and metastasis will provide valuable information on establishing strategies to manipulate $TGF-{\beta}$ signaling which should be a high priority for the development of anti-metastatic therapeutics.
Keywords
$TGF-{\beta}$; EMT; MMP; Invasion.;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Akhurst, R.J. and Balmain, A. (1999). Genetic events and the role of TGF-$\beta$ in epithelial tumor progression. J. Pathol., 187, 82-90   DOI   ScienceOn
2 Atfi, A., Djelloul, S., Chastre, E., Davis, R. and Gespach, C. (1997). Evidence for a role of Rho-like GTPases and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in transforming growth factor $\beta$-mediated signaling. J. Biol. Chem., 272, 1429-1432   DOI   ScienceOn
3 Attisano, L. and Wrana, J.L. (2002). Signal transduction by the TGF-$\beta$ superfamily. Science, 296, 1646-1647   DOI   ScienceOn
4 Bakin, A.V., Tomlinson, A.K., Bhowmick, N.A., Moses, H.L. and Arteaga, C.L. (2000). Phosphatidylinositol 3-kinase function is required for transforming growth factor $\beta$-mediated epithelial to mesenchymal transition and cell migration. J. Biol. Chem., 275, 36803-36810   DOI   ScienceOn
5 Dumont, N., Bakin, A.V. and Arteaga, C.L. (2003). Autocrine transforming growth factor-$\beta$ signaling mediates Smadindependent motility in human cancer cells. J. Biol. Chem., 278, 3275-3285   DOI   ScienceOn
6 Festuccia, C., Bologna, M., Gravina, G.L., Guerra, F., Angelucci, A., Villanova, I., Millimaggi, D. and Teti, A. (1999). Osteoblast conditioned media contain TGF$\beta$1 and modulate the migration of prostate tumor cells and their interactions with extracellular matrix components. Int. J. Cancer., 81, 395-403   DOI   ScienceOn
7 Itoh, S., Itoh, F., Goumans, M.J. and ten Dijke, P. (2000). Signaling of transforming growth factor-$\beta$ family members through Smad proteins. Eur. J. Biochem., 267, 6954-6967   DOI   ScienceOn
8 Karsdal, M.A., Fjording, M.S., Foged, N.T., Delaisse, J.M. and Lochter, A. (2001). Transforming growth factor-$\beta$-induced osteoblast elongation regulates osteoclastic bone resorption through a p38 mitogen-activated protein kinase- and matrix metalloproteinase dependent pathway. J. Biol. Chem., 276, 39350-39358   DOI   ScienceOn
9 Kim, M.S., Lee, E.J., Kim, H.R. and Moon, A. (2003). p38 Kinase is a key signaling molecule for H-Ras-induced cell motility and invasive phenotype in human breast epithelial cells. Cancer Res., 63, 5454-5461
10 Lochter, A., Galosy, S., Muschler, J., Freedman, N., Werb, Z. and Bissell, M.J. (1997). Matrix metalloproteinase stromelysin- 1 triggers a cascade of molecular alterations that leads to stable epithelial-tomesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J. Cell Biol., 139, 1861-1872   DOI   ScienceOn
11 Piek, E., Moustakas, A., Kurisaki, A., Heldin, C.H. and ten Dijke, P. (1999). TGF-$\beta$ type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells. J. Cell Sci., 112, 4557-4568
12 Reiss, M. and Barcellos-Hoff, M.H. (1997). Transforming growth factor $\beta$ in breast cancer: a working hypothesis. Breast Cancer Res. Treat., 45, 81-95   DOI   ScienceOn
13 Taipale, J., Saharinen, J. and Keski-Oja, J. (1998). Extracellular matrix-associated transforming growth factor-$\beta$: role in cancer cell growth and invasion. Adv. Cancer Res., 75, 87-134   DOI
14 Tryggvason, K., Hoyhtya, M. and Pyke, C. (1993). Type IV collagenases in invasive tumors. Breast Cancer Res. Treat.,24, 209-218   DOI
15 Tanaka, Y., Nakayamada, S., Fujimoto, H., Okada, Y., Umehara, H. and Kataoka, T. (2002). H-Ras/mitogen-activated protein kinase pathway inhibits integrin-mediated adhesion and induces apoptosis in osteoblasts. J. Biol. Chem., 277, 21446-21452   DOI   ScienceOn
16 Ten Dijke, P. and Hill, C.S. (2004). New insights into TGF-$\beta$- Smad signalling. Trends Biochem. Sci., 29, 265-273   DOI   ScienceOn
17 Tobin, S.W., Douville, K., Benbow, U., Brinckerhoff, C.E., Memoli, V.A. and Arrick, B.A. (2002). Consequences of altered TGF-$\beta$ expression and responsiveness in breast cancer: Evidence for autocrine and paracrine effects. Oncogene, 21, 108-118   DOI   ScienceOn
18 Ura, H., Bonfil, R.D., Reich, R., Reddel, R., Pfeifer, A., Harris, C.C. and Klein-Szanto, A.J. (1989). Expression of type IV collagenase and procollagen genes and its correlation with the tumorigenic, invasive, and metastatic abilities of oncogene-transformed human bronchial epithelial cells. Cancer Res., 49, 4615-4621
19 Valcourt, U., Kowanetz, M., Niimi, H., Heldin, C.H. and Moustakas, A. (2005). TGF-$\beta$ and the Smad signaling pathway support transcriptomic reprogramming during epithelialmesenchymal cell transition. Mol. Biol. Cell., 16, 1987- 2002   DOI   ScienceOn
20 Whitman, M. (1998). Smads and early developmental signaling by the TGF$\beta$ superfamily. Genes Dev., 12, 2445-2462   DOI   ScienceOn
21 Kim, E.S., Kim, M.S. and Moon, A. (2005). Transforming growth factor (TGF)-$\beta$ in conjunction with H-ras activation promotes malignant progression of MCF10A breast epithelial cells. Cytokine, 29, 84-91   DOI   ScienceOn
22 Cui, W., Fowlis, D.J., Bryson, S., Duffie, E., Ireland, H., Balmain, A. and Akhurst, R.J. (1996). TGF$\beta$ inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell, 86, 531-542   DOI   ScienceOn
23 De Larco, J.E. and Todaro, G.J. (1978). Growth factors from murine sarcoma virus-transformed cells. Proc. Natl. Acad. Sci. U.S.A., 75, 4001-4005
24 Hanafusa, H., Ninomiya-Tsuji, J., Masuyama, N., Nishita, M., Fujisawa, J. and Shibuya, H. (1999). Involvement of the p38 mitogenactivated protein kinase pathway in transforming growth factor $\beta$-induced gene expression. J. Biol. Chem., 274, 27161-27167   DOI
25 Hartsough, M.T. and Mulder, K.M. (1995). Transforming growth factor $\beta$ activation of p44mapk in proliferating cultures of epithelial cells. J. Biol. Chem., 270, 7117-7124   DOI   ScienceOn
26 Rosivatz, E., Becker, I., Specht, K., Fricke, E., Luber, B., Busch, R., Hofler, H. and Becker, K.F. (2002). Differential expression of the epithelial-mesenchymal transition regulators anail, SIP1, and twist in gastric cancer. Am. J. Pathol., 161, 1881-1891   DOI   ScienceOn
27 Tian, F., Byfield, S.D., Parks, W.T., Stuelten, C.H., Nemani, D., Zhang, Y.E. and Roberts, A.B. (2004). Smad-binding defective mutant of transforming growth factor $\beta$ type I receptor enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Res., 64, 4523- 4530   DOI   ScienceOn
28 Massague, J. (1998). TGF-$\beta$ signal transduction. Annu. Rev. Biochem., 67, 753-791   DOI   ScienceOn
29 Yanagisawa, K., Osada, H., Masuda, A., Kondo, M., Saito, T., Yatabe, Y., Takagi, K. and Takahashi, T. (1998). Induction of apoptosis by Smad3 and down-regulation of Smad3 expression in response to TGF-$\beta$ in human normal lung epithelial cells. Oncogene, 17, 1743-1747   DOI
30 Akhurst, R.J. and Derynck, R. (2001). TGF-$\beta$ signaling in cancer- a double-edged sword. Trends Cell Biol., 11, S44- S51
31 Miettinen, P.J., Ebner, R., Lopez, A.R. and Derynck, R. (1994). TGF-$\beta$ induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J. Cell Biol., 127, 2021-2036   DOI
32 Sano, Y., Harada, J., Tashiro, S., Gotoh-Mandeville, R., Maekawa, T. and Ishii, S. (1999). ATF2 is a common nuclear target of Smad and TAK1 pathways in transforming growth factor-$\beta$ signaling. J. Biol. Chem., 274, 8949- 8957   DOI   ScienceOn
33 Stetler-Stevenson, W.G. (1990). Type IV collagenases in tumor invasion and metastasis. Cancer Metastasis Rev., 9, 289- 303   DOI
34 Watson, D.M., Elton, R.A., Jack, W.J., Dixon, J.M., Chetty, U. and Miller, W.R. (1991). The H-ras oncogene product p21 and prognosis in human breast cancer. Breast Cancer Res. Treat., 17, 161-169   DOI
35 Wahl, S.M., Allen, J.B., Weeks, B.S., Wong, H.L. and Klotman, P.E. (1993). Transforming growth factor $\beta$ enhances integrin expression and type IV collagenase secretion in human monocytes. Proc. Natl. Acad. Sci. U.S.A., 90, 4577-4581
36 Zhang, Y. and Derynck, R. (1999). Regulation of Smad signalling by protein associations and signalling crosstalk. Trends Cell. Biol., 9, 274-279   DOI   ScienceOn
37 Bierie, B. and Moses, H.L. (2006). TGF-$\beta$ and cancer. Cytokine Growth Factor Rev., 17, 29-40   DOI   ScienceOn
38 Song, H., Ki, S.H., Kim, S.G. and Moon, A. (2006). Activating transcription factor (ATF)2 mediates MMP-2 transcriptional activation induced by p38 MAPK in breast epithelial cells. Cancer Res., 66, 10487-10496   DOI   ScienceOn
39 Clark, G.J. and Der, C.J. (1995). Aberrant function of the Ras signal transduction pathway in human breast cancer. Breast Cancer Res. Treat., 35, 133-144   DOI
40 McEarchern, J.A., Kobie, J.J., Mack, V., Wu, R.S., Meade-Tollin, L. and Arteaga, C.L. (2001). Invasion and metastasis of a mammary tumor involves TGF-$\beta$ signaling. Int. J. Cancer., 91, 76-82   DOI   ScienceOn
41 Bakin, A.V., Rinehart, C., Tomlinson, A.K. and Arteaga, C.L. (2002). p38 mitogen-activated protein kinase is required for TGF$\beta$-mediated fibroblastic transdifferentiation and cell migration. J. Cell. Sci., 115, 3193-3206
42 Manning, G., Whyte, D.B., Martinez, R., Hunter, T. and Sudarsanam, S. (2002). The protein kinase complement of the human genome. Science, 298, 1912-1934
43 Mulder, K.M. (2000). Role of Ras and Mapks in TGF- $\beta$signaling. Cytokine Growth Factor Rev., 11, 23-35   DOI   ScienceOn
44 Oft, M., Peli, J., Rudaz, C., Schwarz, H., Beug, H. and Reichmann, E. (1996). TGF-$\beta$1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev., 10, 2462-2477   DOI   ScienceOn
45 Markowitz, S.D. and Roberts, A.B. (1996). Tumor suppressor activity of the TGF-$\beta$ pathway in human cancers. Cytokine Growth Factor Rev., 7, 93-102   DOI   ScienceOn
46 Tucker, R.F., Shipley, G.D., Moses, H.L. and Holley, R.W. (1984). Growth inhibitor from BSC-1 cells closely related to platelet type beta transforming growth factor. Science, 226, 705-707   DOI   ScienceOn
47 Campbell, C.E., Flenniken, A.M., Skup, D. and Williams, B.R. (1991). Identification of a serum- and phorbol esterresponsive element in the murine tissue inhibitor of metalloproteinase gene. J. Biol. Chem., 266, 7199-7206
48 Saika, S., Kono-Saika, S., Ohnishi, Y., Sato, M., Muragaki, Y., Ooshima, A., Flanders, K.C., Yoo, J., Anzano, M. and Liu, C.Y. (2004). Smad3 signaling is required for epithelialmesenchymal transition of lens epithelium after injury. Am. J. Pathol., 164, 651-663   DOI   ScienceOn
49 Giannelli, G., Bergamini, C., Fransvea, E., Sgarra, C. and Antonaci, C. (2005). Laminin 5 with transforming growth factor-$\beta$ induces epithelial to mesenchymal transition in hepatocellular carcinoma. Gastroenterology, 129, 1375- 1383   DOI   ScienceOn
50 Maehara, Y., Kakeji, Y., Kabashima, A., Emi, Y., Watanabe, A., Akazawa, K., Baba, H., kohnoe, S. and Sugimachi, K. (1999). Role of transforming growth factor-$\beta$1 in invasion and metastasis in gastric carcinoma. J. Clin. Oncol., 17, 607-614   DOI
51 Blobe, G.C., Schiemann, W.P. and Lodish, H.F. (2000). Role of transforming growth factor $\beta$ in human disease. N. Engl. J. Med., 342, 1350-1358   DOI   ScienceOn
52 Shi, Y. and Massague, J. (2003). Mechanisms of TGF-$\beta$ signaling from cell membrane to the nucleus. Cell, 113, 685- 700   DOI   ScienceOn
53 Li, W., Qiao, W., Chen, L., Xu, X., Yang, X., Li, D., Li, C., Brodie, S.G., Meguid, M.M. and Hennighausen, L. (2003). Squamous cell carcinoma and mammary abscess formation through squamous metaplasia in Smad4/Dpc4 conditional knockout mice. Development, 130, 6143-6153   DOI   ScienceOn
54 Marshall, M.S. (1995). Ras target proteins in eukaryotic cells. FASEB J., 9, 1311-1318   DOI
55 Moses, H.L., Tucker, R.F., Leof, E.B., Coffey, R.J. Jr., Halper, J. and Shipley, G.D. (1985). Type-$\beta$ transforming growth factor is a growth stimulator and a growth inhibitor (Feramisco, J., Ozanne, B and Stiles, C. Eds.). Cold Spring Harbor Laboratories., New York, pp 65-71
56 Kitagawa, K., Murata, A., Matsuura, N., Tohya, K., Takaichi, S., Monden, M. and Inoue, M. (1996). Epithelial-mesenchymal transformation of a newly established cell line from ovarian adenosarcoma by transforming growth factor-$\beta$1. Int. J. Cancer., 66, 91-97   DOI
57 Tian, F., DaCosta Byfield, S., Parks, W.T., Yoo, S., Felici, A., Tang, B., Piek, E., Wakefield, L.M. and Roberts, A.B. (2003). Reduction in Smad2/3 signaling enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Res., 63, 8284-8292
58 Iglesias, M., Frontelo, P., Gamallo, C. and Quintanilla, M. (2000). Blockade of Smad4 in transformed keratinocytes containing a Ras oncogene leads to hyperactivation of the Ras-dependent Erk signalling pathway associated with progression to undifferentiated carcinomas. Oncogene, 19,4134-4145   DOI
59 Boyer, B., Valles, A.M. and Edme, N. (2000). Induction and regulation of epithelial-mesenchymal transitions. Biochem. Pharmacol., 60, 1091-1099   DOI   ScienceOn
60 Kim, E.S., Sohn, Y.W. and Moon, A. (2007). TGF-$\beta$-induced transcriptional activation of MMP-2 is mediated by activating transcription factor (ATF)2 in human breast epithelial cells. Cancer Lett., 252, 147-156   DOI   ScienceOn
61 Mulder, K.M. and Morris, S.L. (1992). Activation of p21ras by transforming growth factor $\beta$ in epithelial cells. J. Biol. Chem., 267, 5029-5031
62 Muraoka, R.S., Dumont, N., Ritter, C.A., Dugger, T.C., Brantley, D.M. and Chen, J. (2002). Blockade of TGF-$\beta$ inhibits mammary tumor cell viability, migration, and metastases. J. Clin. Invest., 109, 1551-1559   DOI
63 Sehgal, I. and Thompson, T.C. (1999). Novel regulation of type IV collagenase (matrix metalloproteinase-9 and -2) activities by transforming growth factor-$\beta$1 in human prostate cancer cell lines. Mol. Biol. Cell., 10, 407-416   DOI
64 Forrester, E., Chytil, A., Bierie, B., Aakre, M., Gorska, A.E., Sharif-Afshar, A.R., Muller, W.J. and Moses, H.L. (2005). Effect of conditional knockout of the type II TGF$\beta$ receptor gene in mammary epithelia on mammary gland development and polyomavirus middle Tantigen induced tumor formation and metastasis. Cancer Res., 65, 2296-23   DOI   ScienceOn
65 Bhowmick, N.A., Ghiassi, M., Bakin, A., Aakre, M., Lundquist, C.A., Engel, M.E., Arteaga, C.L. and Moses, H.L. (2001). Transforming growth factor-$\beta$ mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol. Biol. Cell., 12, 27-36   DOI
66 Frixen, U.H., Behrens, J., Sachs, M., Eberle, G., Voss, B., Warda, A., Lochner, D. and Birchmeier, W. (1991). E-Cadherin- mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J. Cell. Biol., 113, 173-185   DOI
67 Schwarz, L.C., Gingras, M.C., Goldberg, G., Greenberg, A.H. and Wright, J.A. (1988). Loss of growth factor dependence and conversion of transforming growth factor-$\beta$1 inhibition to stimulation in metastatic H-ras-transformed murine fibroblasts. Cancer Res., 48, 6999-7003
68 Sternlicht, M.D., Lochter, A., Sympson, C.J., Huey, B., Rougier, J.P. and Gray, J.W. (1999). The stromal proteinase MMP3/ stromelysin-1 promotes mammary carcinogenesis. Cell, 98, 137-146   DOI   ScienceOn
69 Bourne, H.R., Sanders, D.A. and McCormick, F. (1991). The GTPase superfamily: conserved structure and molecular mechanism. Nature, 349, 117-127   DOI   ScienceOn
70 Fidler, I.J. (1990). Critical factors in the biology of human cancer metastasis. Cancer Res., 50, 6130-6138
71 Johansson, N., Ala-aho, R., Uitto, V., Grenman, R., Fusenig, N.E. and Lopez-Otin, C. (2000). Expression of collagenase- 3 (MMP-13) and collagenase-1 (MMP-1) by transformed keratinocytes is dependent on the activity of p38 mitogenactivated protein kinase. J. Cell. Sci., 113, 227-235
72 Liotta, L.A. and Stetler-Stevenson, W.G. (1991). Tumor invasion and metastasis: an imbalance of positive and negative regulation. Cancer Res., 51, 5054-5059
73 Portella, G., Cumming, S.A., Liddell, J., Cui, W., Ireland, H., Akhurst, R.J. and Balmain, A. (1998). Transforming growth factor $\beta$ is essential for spindle cell conversion of mouse skin carcinoma in vivo: implications for tumor invasion. Cell Growth Differ., 9, 393-404
74 Wick, W., Platten, M. and Weller, M. (2001). Glioma cell invasion: regulation of metalloproteinase activity by TGF-$\beta$. J. Neurooncol., 53, 177-185   DOI   ScienceOn
75 Yin, J.J., Selander, K., Chirgwin, J.M., Dallas, M., Grubbs, B.G., Wieser, R., Massague, J., Mundy, G.R. and Guise, T.A. (1999). TGF-$\beta$ signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J. Clin. Invest., 103, 197-206   DOI   ScienceOn
76 Clair, T., Miller, W.R. and Cho-Chung, Y.S. (1987). Prognostic significance of the expression of a ras protein with a molecular weight of 21,000 by human breast cancer. Cancer Res., 47, 5290-5293
77 Elliott, R.L. and Blobe, G.C. (2005). Role of transforming growth factor $\beta$ in human cancer. J. Clin. Oncol., 23, 2078-2093   DOI   ScienceOn
78 Lee, J.M., Dedhar, S., Kalluri, R. and Thompson, E.W. (2006). The epithelial-mesencymal transiton: new insights in signaling, development, and disease. J. Cell Biol., 172, 973-977   DOI   ScienceOn
79 Ionescu, A.M., Schwarz, E.M., Zuscik, M.J., Drissi, H., Puzas, J.E., Rosier, R.N. and O'Keefe, R.J. (2003). ATF2 cooperates with Smad3 to mediate TGF-$\beta$ effects on chondrocyte maturation. Exp. Cell Res., 288, 198-207   DOI   ScienceOn
80 Ellenrieder, V., Hendler, S.F., Ruhland, C., Boeck, W., Adler, G. and Gress, T.M. (2001). TGF-$\beta$-induced invasiveness of pancreatic cancer cells is mediated by matrix metalloproteinase- 2 and the urokinase plasminogen activator system. Int. J. Cancer., 93, 204-211   DOI   ScienceOn
81 Kim, E.S., Kim, M.S. and Moon, A. (2004). TGF-$\beta$-induced upregulation of MMP-2 and MMP-9 depends on p38 MAPK, but not ERK signaling in MCF10A human breast epithelial cells. Int. J. Oncol., 25, 1375-1382
82 Roberts, A.B. and Sporn, M.B. (1990). Peptide growth factors and their receptors-Handbook of experimental pharmacology (Sporn, M.B and Roberts, A.B. Eds.). Springer, Heidelberg, pp. 419-472
83 Santibanez, J.F., Guerrero, J., Quintanilla, M., Fabra, A. and Martinez, J. (2002). Transforming growth factor-$\beta$1 modulates matrix metalloproteinase-9 production through the Ras/MAPK signaling pathway in transformed keratinocytes. Biochem. Biophys. Res. Commun., 296, 267-273   DOI   ScienceOn
84 Yu, L., Hebert, M.C. and Zhang, Y.E. (2002). TGF-$\beta$ receptoractivated p38 MAP kinase mediates Smad-independent TGF-$\beta$ responses. EMBO J., 21, 3749-3759   DOI   ScienceOn
85 Lin, S.W., Lee, M.T., Ke, F.C., Lee, P.P., Huang, C.J. and Ip, M.M. (2000). TGFa1 stimulates the secretion of matrix metalloproteinase 2 (MMP2) and the invasive behavior in human ovarian cancer cells, which is suppressed by MMP inhibitor BB3103. Clin. Exp. Metastasis., 18, 493-499   DOI
86 de Caestecker, M.P., Piek, E. and Roberts, A.B. (2000). Role of transforming growth factor-$\beta$ signaling in cancer. J. Natl. Cancer Inst., 92, 1388-1402   DOI   ScienceOn
87 Derynck, R. and Zhang, Y.E. (2003). Smad-dependent and Smad-independent pathways in TGF-$\beta$ family signalling. Nature, 425, 577-584   DOI   ScienceOn
88 Itoh, S., Thorikay, M., Kowanetz, M., Moustakas, A., Itoh, F., Heldin, C.H. and ten Dijke, P. (2003). Elucidation of Smad requirement in transforming growth factor-$\beta$ type I receptor- induced responses. J. Biol. Chem., 278, 3751-3761   DOI   ScienceOn
89 Massague, J. (2000). How cells read TGF-$\beta$ signals. Nat. Rev. Mol. Cell Biol., 1, 169-178   DOI   ScienceOn
90 Oft, M., Heider, K.H. and Beug, H. (1998). TGF-$\beta$ signaling is necessary for carcinoma cell invasiveness and metastasis. Curr. Biol., 8, 1243-1252   DOI   ScienceOn
91 Oft, M., Akhurst, R.J. and Balmain, A. (2002). Metastasis is driven by sequential elevation of H-ras and Smad2 levels. Nat. Cell. Biol., 4, 487-494
92 Roberts, A.B., Anzano, M.A., Wakefield, L.M., Roche, N.S., Stern, D.F. and Sporn, M.B. (1985). Type $\beta$ transforming growth factor: A bifunctional regulator of cellular growth. Proc. Natl. Acad. Sci. U.S.A., 82, 119-123
93 Siegel, P.M., Shu, W., Cardiff, R.D., Muller, W.J. and Massague, J. (2003). Transforming growth factor $\beta$ signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc. Natl. Acad. Sci. U.S.A., 100, 8430-8435
94 Welch, D.R., Fabra, A. and Nakajima, M. (1990). Transforming growth factor $\beta$ stimulates mammary adenocarcinoma cell invasion and metastatic potential. Proc. Natl. Acad. Sci. U.S.A., 87, 7678-7682
95 Yan, Z., Winawer, S. and Friedman, E. (1994). Two different signal transduction pathways can be activated by transforming growth factor $\beta$1 in epithelial cells. J. Biol. Chem., 269, 13231-13237
96 Thiery, J.P. and Chopin, D. (1999). Epithelial cell plasticity in development and tumor progression. Cancer Metastasis Rev., 18, 31-42   DOI   ScienceOn
97 Sato, H., Takino, T., Okada, Y., Cao, J., Shinagawa, A. and Yamamoto, E. (1994). A matrix metalloproteinase expressed on the surface of invasive tumor cells. Nature, 370, 61-65   DOI   ScienceOn
98 Alexandrow, M.G. and Moses, H.L. (1995). Transforming growth factor $\beta$ and cell cycle regulation. Cancer Res., 55, 1452- 1457
99 Mauviel, A., Chung, K.Y., Agarwal, A., Tamai, K. and Uitto, J. (1996). Cell-specific induction of distinct oncogenes of the Jun family is responsible for differential regulation of collagenase gene expression by transforming growth factor-$\beta$ in fibroblasts and keratinocytes. J. Biol. Chem., 271, 10917-10923   DOI   ScienceOn
100 Platten, M., Wick, W. and Weller, M. (2001). Malignant glioma biology: role for TGF-$\beta$ in growth, motility, angiogenesis, and immune escape. Microsc. Res. Tech., 52, 401-410   DOI   ScienceOn
101 Thiery, J.P. (2002). Epithelial-mesenchymal transitions in development and pathologies. Curr. Opin. Cell Biol., 15, 740-746   DOI   ScienceOn