Jeong, Seokho;Mok, Lydia;Kim, Se Ik;Ahn, TaeJin;Song, Yong-Sang;Park, Taesung
Genomics & Informatics
/
제16권4호
/
pp.32.1-32.7
/
2018
Ovarian cancer is one of the leading causes of cancer-related deaths in gynecological malignancies. Over 70% of ovarian cancer cases are high-grade serous ovarian cancers and have high death rates due to their resistance to chemotherapy. Despite advances in surgical and pharmaceutical therapies, overall survival rates are not good, and making an accurate prediction of the prognosis is not easy because of the highly heterogeneous nature of ovarian cancer. To improve the patient's prognosis through proper treatment, we present a prognostic prediction model by integrating high-dimensional RNA sequencing data with their clinical data through the following steps: gene filtration, pre-screening, gene marker selection, integrated study of selected gene markers and prediction model building. These steps of the prognostic prediction model can be applied to other types of cancer besides ovarian cancer.
Purpose: Carbohydrate antigen (CA) 242 is inversely related to prognosis in many cancers. However, few data regarding CA 242 in esophageal cancer (EC) are available. The aim of this study was to determine the prognostic value of CA 242 and propose an optimum cut-off point in predicting survival difference in patients with esophageal squamous cell carcinoma (ESCC). Methods: A retrospective analysis was conducted of 192 cases. A receiver operating characteristic (ROC) curve for survival prediction was plotted to verify the optimum cuf-off point. Univariate and multivariate analyses were performed to evaluate prognostic parameters for survival. Results: The positive rate for CA 242 was 7.3% (14/192). The ROC curve for survival prediction gave an optimum cut-off of 2.15 (U/ml). Patients with CA 242 ${\leq}$ 2.15 U/ml had significantly better 5-year survival than patients with CA 242 >2.15 U/ml (45.4% versus 22.6%; P=0.003). Multivariate analysis showed that differentiation (P=0.033), CA 242 (P=0.017), T grade (P=0.004) and N staging (P<0.001) were independent prognostic factors. Conclusions: Preoperative CA 242 is a predictive factor for long-term survival in ESCC, especially in nodal-negative patients. We conclude that 2.15 U/ml may be the optimum cuf-off point for CA 242 in predicting survival in ESCC.
암환자의 예후 예측에 기여하는 유전자를 찾는 것은 환자에게 보다 적합한 치료를 제공하기 위한 도전 과제 중 하나이다. 예후 유전자를 찾기 위해 유전자 발현 데이터를 이용한 분류 모델 개발 연구가 많이 이루어지고 있다. 하지만 암의 이질성으로 인해 예후 예측의 정확도 향상에 한계가 있다는 문제가 있다. 본 논문에서는 유방암을 비롯한 6개의 암에 대한 암환자의 마이크로어레이 데이터와 생물학적 네트워크 데이터를 이용하여 페이지랭크 알고리즘을 통해 예후 유전자들을 식별하고, K-Nearest Neighbor 알고리즘을 사용하여 암 환자의 예후를 예측하는 모델을 제안한다. 그리고 페이지랭크를 사용하기 전에 K-Means 클러스터링으로 유전자 발현 패턴이 비슷한 샘플들을 나누어 이질성을 극복하고자 한다. 본 논문에서 제안한 방법은 기존의 유전자 바이오마커를 찾는 알고리즘보다 높은 예측 정확도를 보여 주었으며, GO 검증을 통해 클러스터에 특이적인 생물학적 기능을 확인하였다.
Inal, Ali;Kaplan, M. Ali;Kucukoner, Mehmet;Urakci, Zuhat;Karakus, Abdullah;Isikdogan, Abdurrahman
Asian Pacific Journal of Cancer Prevention
/
제13권4호
/
pp.1281-1284
/
2012
Background: Platinum-hased chemotherapy for advanced non-small cell lung cancer (NSCLC) is still considered the first choice, presenting a modest survival advantage. However, the patients eventually experience disease progression and require second-line therapy. While there are reliable predictors to identify patients receiving first-line chemotherapy, very little knowledge is available about the prognostic factors in patients who receive second-line treatments. The present study was therefore performed. Methods: We retrospectively reviewed 107 patients receiving second-line treatments from August 2002 to March 2012 in the Dicle University, School of Medicine, Department of Medical Oncology. Fourteen potential prognostic variables were chosen for analysis in this study. Univariate and multivariate analyses were conducted to identify prognostic factors associated with survival. Result: The results of univariate analysis for overall survival (OS) were identified to have prognostic significance: performance status (PS), stage, response to first-line chemotherapy response to second-line chemotherapy and number of metastasis. PS, diabetes mellitus (DM), response to first-line chemotherapy and response to second-line chemotherapy were identified to have prognostic significance for progression-free survival (PFS). Multivariate analysis showed that PS, response to first-line chemotherapy and response to second-line chemotherapy were considered independent prognostic factors for OS. Furthermore, PS and response to second-line chemotherapy were considered independent prognostic factors for PFS. Conclusion: In conclusion, PS, response to first and second-line chemotherapy were identified as important prognostic factors for OS in advanced NSCLC patients who were undergoing second-line palliative treatment. Furthermore, PS and response to second-line chemotherapy were considered independent prognostic factors for PFS. It may be concluded that these findings may facilitate pretreatment prediction of survival and can be used for selecting patients for the correct choice of treatment.
Inal, Ali;Kaplan, M. Ali;Kucukoner, Mehmet;Urakci, Zuhat;Guven, Mehmet;Nas, Necip;Yunce, Muharrem;Isikdogan, Abdurrahman
Asian Pacific Journal of Cancer Prevention
/
제13권8호
/
pp.3869-3872
/
2012
Background: The majority of patients with gastric cancer in developing countries present with advanced disease. Systemic chemotherapy therefore has limited impact on overall survival. Patients eligible for chemotherapy should be selected carefully. The aim of this study was to analyze prognostic factors for survival in advanced gastric cancer patients undergoing first-line palliative chemotherapy. Methods: We retrospectively reviewed 107 locally advanced or metastatic gastric cancer patients who were treated with docetaxel and cisplatin plus fluorouracil (DCF) as first-line treatment between June 2007 and August 2011. Twenty-eight potential prognostic variables were chosen for univariate and multivariate analyses. Results: Among the 28 variables of univariate analysis, nine variables were identified to have prognostic significance: performance status, histology, location of primary tumor, lung metastasis, peritoneum metastasis, ascites, hemoglobin, albumin, weight loss and bone metastasis. Multivariate analysis by Cox proportional hazard model, including nine prognostic significance factors evident in univariate analysis, revealed weight loss, histology, peritoneum metastasis, ascites and serum hemoglobin level to be independent variables. Conclusion: Performance status, weight loss, histology, peritoneum metastasis, ascites and serum hemoglobin level were identified as important prognostic factors in advanced gastric cancer patients. These findings may facilitate pretreatment prediction of survival and can be used for selecting patients for treatment.
Purpose: The eighth American Joint Committee on Cancer staging system for breast cancer was recently published to more accurately predict the prognosis by adding biomarkers such as estrogen receptors, progesterone receptors, and human epidermal growth factor receptor 2. However, this system is very complicated and difficult to use by clinicians. The authors developed a program to aid in setting up the staging system and confirmed its usefulness by applying it to theoretical combinations and actual clinical data. Methods: The program was developed using the Microsoft Excel Macro. It was used for the anatomic, clinical and pathological prognostic staging of 588 theoretical combinations. The stages were also calculated the stages using 840 patients with breast cancer without carcinoma in situ or distant metastasis who did not undergo preoperative chemotherapy. Results: The anatomic, clinical and pathological prognostic stages were identical in 240 out of 588 theoretical combinations. In the actual patients' data, stages IB and IIIB were more frequent in clinical and pathological prognostic stages than in the anatomic stage. The anatomic stage was similar to the clinical prognostic stage in 58.2% and to the pathological prognostic stage in 61.9% of patients. Oncotype DX changed the pathological prognostic stage in 2.1% of patients. Conclusion: We developed a program for the new American Joint Committee on Cancer staging system that will be useful for clinical prognostic prediction and large survival data analysis.
This paper aimed to summarize the current situation of prognostication for patients with an expected survival of weeks or months, and to clarify future research priorities. Prognostic information is essential for patients, their families, and medical professionals to make end-of-life decisions. The clinician's prediction of survival is often used, but this may be inaccurate and optimistic. Many prognostic tools, such as the Palliative Performance Scale, Palliative Prognostic Index, Palliative Prognostic Score, and Prognosis in Palliative Care Study, have been developed and validated to reduce the inaccuracy of the clinician's prediction of survival. To date, there is no consensus on the most appropriate method of comparing tools that use different formats to predict survival. Therefore, the feasibility of using prognostic scales in clinical practice and the information wanted by the end users can determine the appropriate prognostic tool to use. We propose four major themes for further prognostication research: (1) functional prognosis, (2) outcomes of prognostic communication, (3) artificial intelligence, and (4) education for clinicians.
Prostate cancer, with a lifetime prevalence of one in six men, is the second cause of malignancy-related death and the most prevalent cancer in men in many countries. Nowadays, prostate cancer diagnosis is often based on the use of biomarkers, especially prostate-specific antigen (PSA) which can result in enhanced detection at earlier stage and decreasing in the number of metastatic patients. However, because of the low specificity of PSA, unnecessary biopsies and mistaken diagnoses frequently occur. Prostate cancer has various features so prognosis following diagnosis is greatly variable. There is a requirement for new prognostic biomarkers, particularly to differentiate between inactive and aggressive forms of disease, to improve clinical management of prostate cancer. Research continues into finding additional markers that may allow this goal to be attained. We here selected a group of candidate biomarkers including PSA, PSA velocity, percentage free PSA, $TGF{\beta}1$, AMACR, chromogranin A, IL-6, IGFBPs, PSCA, biomarkers related to cell cycle regulation, apoptosis, PTEN, androgen receptor, cellular adhesion and angiogenesis, and also prognostic biomarkers with Genomic tests for discussion. This provides an outline of biomarkers that are presently of prognostic interest in prostate cancer investigation.
Background: The majority of patients with pancreatic cancer present with advanced disease. Systemic chemotherapy has limited impact on overall survival (OS) so that eligible patients should be selected carefully. The aim of this study was to analyze prognostic factors for survival in Turkish advanced pancreatic cancer patients who survived more than one year from the diagnosis of recurrent and/or metastatic disease and receiving gemcitabine (Gem) alone or gemcitabine plus cisplatin (GemCis). Methods: This retrospective evaluation was performed for patients who survived more than one year from the diagnosis of recurrent and/or metastatic disease and who received gemcitabine between December 2005 and August 2011. Twenty-seven potential prognostic variables were chosen for univariate and multivariate analyses to identify prognostic factors associated with survival. Results: Among the 27 variables in univariate analysis, three were identified to have prognostic significance: sex (p = 0.04), peritoneal dissemination (p =0.02) and serum creatinine level (p=0.05). Multivariate analysis by Cox proportional hazard model showed only peritoneal dissemination to be an independent prognostic factor for survival. Conclusion: In conclusion, peritoneal metastasis was identified as an important prognostic factor in metastatic pancreatic cancer patients who survived more than one year from the diagnosis of recurrent and/or metastatic disease and receiving Gem or GemCis. The findings should facilitate pretreatment prediction of survival and can be used for selecting patients for treatment.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.