Browse > Article
http://dx.doi.org/10.7314/APJCP.2015.16.7.2601

Biomarkers for Evaluation of Prostate Cancer Prognosis  

Esfahani, Maryam (Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences)
Ataei, Negar (Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences)
Panjehpour, Mojtaba (Department of Clinical Biochemistry & Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.16, no.7, 2015 , pp. 2601-2611 More about this Journal
Abstract
Prostate cancer, with a lifetime prevalence of one in six men, is the second cause of malignancy-related death and the most prevalent cancer in men in many countries. Nowadays, prostate cancer diagnosis is often based on the use of biomarkers, especially prostate-specific antigen (PSA) which can result in enhanced detection at earlier stage and decreasing in the number of metastatic patients. However, because of the low specificity of PSA, unnecessary biopsies and mistaken diagnoses frequently occur. Prostate cancer has various features so prognosis following diagnosis is greatly variable. There is a requirement for new prognostic biomarkers, particularly to differentiate between inactive and aggressive forms of disease, to improve clinical management of prostate cancer. Research continues into finding additional markers that may allow this goal to be attained. We here selected a group of candidate biomarkers including PSA, PSA velocity, percentage free PSA, $TGF{\beta}1$, AMACR, chromogranin A, IL-6, IGFBPs, PSCA, biomarkers related to cell cycle regulation, apoptosis, PTEN, androgen receptor, cellular adhesion and angiogenesis, and also prognostic biomarkers with Genomic tests for discussion. This provides an outline of biomarkers that are presently of prognostic interest in prostate cancer investigation.
Keywords
Biomarkers; prostate cancer; PSA; prediction of prognosis;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Rubio J, Ramos D, Lopez-Guerrero JA, et al (2005). Immunohistochemical expression of Ki-67 antigen, Cox-2 and Bax/Bcl-2 in prostate cancer; prognostic value in biopsies and radical prostatectomy specimens. European Urol, 48, 745-51.   DOI
2 Safarinejad MR, Shafiei N, Safarinejad S (2011). Relationship of insulin-like growth factor (IGF) binding protein-3 (IGFBP-3) gene polymorphism with the susceptibility to development of prostate cancer and influence on serum levels of IGF-I, and IGFBP-3. Growth Horm IGF Res, 21, 146-54.   DOI
3 Sardana G, Dowell B, Diamandis EP (2008). Emerging biomarkers for the diagnosis and prognosis of prostate cancer. Clin Chem, 54, 1951-60.   DOI
4 Schwarze SR, DePrimo SE, Grabert LM, et al (2002). Novel pathways associated with bypassing cellular senescence in human prostate epithelial cells. J Biol Chem, 277, 14877-83.   DOI
5 Shariat SF, Canto EI, Kattan MW, Slawin KM (2004). Beyond prostate-specific antigen: new serologic biomarkers for improved diagnosis and management of prostate cancer. Rev Urol, 6, 58-72.
6 Shariat SF, Abdel-Aziz KF, Roehrborn CG, et al (2006). Pre-operative percent free PSA predicts clinical outcomes in patients treated with radical prostatectomy with total PSA levels below 10 ng/ml. European Urol, 49, 293-302.   DOI
7 Shariat SF, Andrews B, Kattan MW, et al (2001). Plasma levels of interleukin-6 and its soluble receptor are associated with prostate cancer progression and metastasis. Urology, 58, 1008-15.   DOI
8 Shariat SF, Karam JA, Margulis V, et al (2008a). New blood-based biomarkers for the diagnosis, staging and prognosis of prostate cancer. BJU Intern, 101, 675-83.   DOI
9 Shariat SF, Kattan MW, Traxel E, et al (2004a). Association of Pre- and postoperative plasma levels of transforming growth factor ${\beta}1$ and interleukin 6 and its soluble receptor with prostate cancer progression. Clin Cancer Res, 10, 1992-9.   DOI
10 Shariat SF, Lamb DJ, Kattan MW, et al (2002). Association of preoperative plasma levels of insulin-like growth factor i and insulin-like growth factor binding proteins-2 and -3 with prostate cancer invasion, progression, and metastasis. J Clin Oncol, 20, 833-41.   DOI
11 Shariat SF, Menesses-Diaz A, Kim IY, et al (2004b). Tissue expression of transforming growth factor-${\beta}1$ and its receptors: correlation with pathologic features and biochemical progression in patients undergoing radical prostatectomy. Urology, 63, 1191-7.   DOI
12 Shariat SF, Walz J, Roehrborn CG, et al (2008b). Early postoperative plasma transforming growth factor-${\beta}1$ is a strong predictor of biochemical progression after radical prostatectomy. J Urol, 179, 1593-7.   DOI
13 Siddiqui E, Mumtaz FH, Gelister J (2004). Understanding prostate cancer. J Royal Soc Promot Health, 124, 219-21.   DOI
14 Society AC (2013). Can prostate cancer be found early? [Online]. Available: http://www.cancer.org/cancer/prostatecancer/detailedguide/prostate-cancer-detection.
15 Southwick PC, Catalona WJ, Partin AW, et al (1999). Prediction of post-radical prostatectomy pathological outcome for stage T1c prostate cancer with percent free prostate specific antigen: a prospective multicenter clinical trial. J Urol, 162, 1346-51.   DOI
16 Sreekumar A, Laxman B, Rhodes DR, et al (2004). Humoral immune response to ${\alpha}$-Methylacyl-CoA racemase and prostate cancer. J Nat Cancer Inst, 96, 834-43.   DOI
17 Tricoli JV, Schoenfeldt M, Conley BA (2004). Detection of prostate cancer and predicting progression current and future diagnostic markers. Clin Cancer Res, 10, 3943-53.   DOI
18 Stamey TA, Johnstone IM, McNeal JE, et al (2002). Preoperative serum prostate specific antigen levels between 2 and 22 ng./ml. correlate poorly with post-radical prostatectomy cancer morphology: prostate specific antigen cure rates appear constant between 2 and 9 ng./ml. J Urol, 167, 103-11.   DOI
19 Thompson IM, Ankerst D, Chi C, et al (2005). OPerating characteristics of prostate-specific antigen in men with an initial psa level of 3.0 ng/ml or lower. JAMA, 294, 66-70.   DOI
20 Timothy J Wilt, Ahmed HU (2013). Prostate cancer screening and the management of clinically localized disease. BMJ, 346, 325.   DOI
21 UK CR. (2012). Prostate cancer mortality statistics [Online]. Available: http://www.cancerresearchuk.org/cancer-info/cancerstats/types/prostate/mortality/.
22 Van Veldhoven PP, Croes K, Casteels M, et al (1997). 2-methylacyl racemase: a coupled assay based on the use of pristanoyl-CoA oxidase/peroxidase and reinvestigation of its subcellular distribution in rat and human liver. Biochim Biophys Acta, 1347, 62-8.   DOI
23 Vergis R, Corbishley CM, Norman AR, et al (2008). Intrinsic markers of tumour hypoxia and angiogenesis in localised prostate cancer and outcome of radical treatment: a retrospective analysis of two randomised radiotherapy trials and one surgical cohort study. Lancet Oncol, 9, 342-51.   DOI
24 Wikstrom P, Damber J-E, Bergh A (2001). Role of transforming growth factor-${\beta}1$ in prostate cancer. Microsc Res Techniq, 52, 411-9.   DOI
25 Yu H, Nicar MR, Shi R, et al (2001). Levels of insulin-like growth factor I (IGF-I) and IGF binding proteins 2 and 3 in serial postoperative serum samples and risk of prostate cancer recurrence. Urology, 57, 471-5.   DOI
26 Wolff JM, Fandel TH, Borchers H, et al (1999). Serum concentrations of transforming growth factor-beta 1 in patients with benign and malignant prostatic diseases. Anticancer Res, 19, 2657-9.
27 Yang J, Wu HF, Qian LX, et al (2006). Increased expressions of vascular endothelial growth factor (VEGF), VEGF-C and VEGF receptor-3 in prostate cancer tissue are associated with tumor progression. Asian J Androl, 8, 169-75.   DOI   ScienceOn
28 Yoshimoto M, Cunha IW, Coudry RA, et al (2007). FISH analysis of 107 prostate cancers shows that PTEN genomic deletion is associated with poor clinical outcome. British J Cancer, 97, 678-85.   DOI
29 Yuan JJ, Coplen DE, Petros JA, et al (1992). Effects of rectal examination, prostatic massage, ultrasonography and needle biopsy on serum prostate specific antigen levels. J Urol, 147, 810-4.
30 Zhigang Z, Wenlv S (2004). Prostate stem cell antigen (PSCA) expression in human prostate cancer tissues: implications for prostate carcinogenesis and progression of prostate cancer. Japanese J Clin Oncol, 34, 414-9.   DOI
31 Zorn KC HP (2014). Prostate specific antigen [Online]. Available: http://www.medicinenet.com/prostate_specific_antigen/page3.htm.
32 Bassler TJ Jr, Orozco R, Bassler IC, O'Dowd GJ, Stamey TA (1998). Most prostate cancers missed by raising the upper limit of normal prostate-specific antigen for men in their sixties are clinically significant. Urology, 52, 1064-9.   DOI
33 Achyut BR, Yang L (2011). Transforming growth factor-${\beta}$ in the gastrointestinal and hepatic tumor microenvironment. Gastroenterology, 141, 1167-78.   DOI   ScienceOn
34 Al-Maghrebi M, Kehinde EO, Anim JT, et al (2012). The role of combined measurement of tissue mRNA levels of AMACR and survivin in the diagnosis and risk stratification of patients with suspected prostate cancer. Intern Urol Nephrol, 44, 1681-9.   DOI
35 Askari F, Parizi MK, Jessri M, et al (2014). Fruit and vegetable intake in relation to prostate cancer in Iranian men: a case-control study. Asian Pac J Cancer Prev, 15, 5223-7.   DOI
36 Bedolla R, Prihoda TJ, Kreisberg JI, et al (2007). Determining risk of biochemical recurrence in prostate cancer by immunohistochemical detection of PTEN expression and Akt activation. Clin Cancer Res, 13, 3860-7.   DOI
37 Behnsawy HM, Miyake H, Harada K-I, et al (2013). Expression patterns of epithelial-mesenchymal transition markers in localized prostate cancer: significance in clinicopathological outcomes following radical prostatectomy. BJU Intern, 111, 30-7.   DOI
38 Bickers B, Aukim-Hastie C (2009). New molecular biomarkers for the prognosis and management of prostate cancer the post PSA era. Anticancer Res, 29, 3289-98.
39 Bensalah K, Lotan Y, Karam JA, et al (2007). New circulating biomarkers for prostate cancer. Prostate Cancer, 11, 112-20.
40 Berruti A, Dogliotti L, Mosca A, et al (2001). Potential clinical value of circulating chromogranin A in patients with prostate carcinoma. Ann Oncol, 12, 153-S7.   DOI
41 Bishoff JT, Freedland SJ, Gerber L, et al (2014). Prognostic utility of the cell cycle progression score generated from biopsy in men treated with prostatectomy. J Urol, 192, 409-14.   DOI
42 Bocan EV, Mederle O, Sarb S, et al (2011). Correlation between histopathological form and the degree of neuroendocrine differentiations in prostate cancer. Rom J Morphol Embryol, 52, 1215-8.
43 Bostwick DG, Burke HB, Djakiew D, et al (2004). Human prostate cancer risk factors. Cancer, 101, 2371-490.   DOI   ScienceOn
44 Buhmeida A, Pyrhonen S, Laato M, Collan Y (2006). Prognostic factors in prostate cancer. Diagnostic Pathol, 1, 1-15.   DOI
45 Carter HB, Kettermann A, Ferrucci L, Landis P, Metter EJ (2007). Prostate-specific antigen velocity risk count assessment: a new concept for detection of life-threatening prostate cancer during window of curability. Urology, 70, 685-90.   DOI
46 Cary KC, Cooperberg MR (2013). Biomarkers in prostate cancer surveillance and screening: past, present, and future. Therapeutic Advances Urol, 5, 318-29.   DOI
47 Chaux A, Peskoe SB, Gonzalez-Roibon N, et al (2012). Loss of PTEN expression is associated with increased risk of recurrence after prostatectomy for clinically localized prostate cancer. Modern Pathol, 25, 1543-9.   DOI
48 Catalona WJ, Partin AW, Slawin KM, et al (1998). Use of the percentage of free prostate-specific antigen to enhance differentiation of prostate cancer from benign prostatic disease: a prospective multicenter clinical trial. JAMA, 279, 1542-7.   DOI
49 Chan JM, Stampfer MJ, Ma J, et al (2002). Insulin-like growth factor-I (IGF-I) and IGF binding protein-3 as predictors of advanced-stage prostate cancer. J Nat Cancer Inst, 94, 1099-106.   DOI
50 Charrier J-P, Tournel C, Michel S, et al (2001). Differential diagnosis of prostate cancer and benign prostate hyperplasia using two-dimensional electrophoresis. Electrophoresis, 22, 1861-6.   DOI
51 Chunthapong J, Seftor EA, Khalkhali-Ellis Z, et al (2004). Dual roles of E-cadherin in prostate cancer invasion. J Cellular Biochem, 91, 649-61.   DOI
52 Crawford ED, Scholz MC, Kar AJ, et al (2014). Cell cycle progression score and treatment decisions in prostate cancer: results from an ongoing registry. Curr Med Res Opin, 30, 1025-31.   DOI
53 Culig Z, Steiner H, Bartsch G, et al (2005). Interleukin-6 regulation of prostate cancer cell growth. J Cellular Biochem, 95, 497-505.   DOI
54 Cuzick J, Berney DM, Fisher G, et al (2012). Prognostic value of a cell cycle progression signature for prostate cancer death in a conservatively managed needle biopsy cohort. British J Cancer, 106, 1095-9.   DOI
55 Di JM, Zhou J, Zhou XL, et al (2009). Cyclooxygenase-2 expression is associated with vascular endothelial growth factor-C and lymph node metastases in human prostate cancer. Arch Med Res, 40, 268-75.   DOI
56 Cuzick J, Swanson GP, Fisher G, et al (2011). Prognostic value of an RNA expression signature derived from cell cycle proliferation genes in patients with prostate cancer: a retrospective study. Lancet Oncol, 12, 245-55.   DOI
57 D'Amico AV, Chen M-H, Roehl KA, et al (2004). Preoperative PSA velocity and the risk of death from prostate cancer after radical prostatectomy. New England J Med, 351, 125-35.   DOI
58 Deng Q-W, He B-S, Pan Y-Q, et al (2014). Roles of E-cadherin (CDH1) genetic variations in cancer risk: a meta-analysis. Asian Pac J Cancer Prev, 15, 3705-13.   DOI   ScienceOn
59 Djavan B, Waldert M, Seitz C, et al (2001). Insulin-like growth factors and prostate cancer. World J Urol, 19, 225-33.   DOI
60 Donovan MJ, Hamann S, Clayton M, et al (2008). Systems pathology approach for the prediction of prostate cancer progression after radical prostatectomy. J Clin Oncol, 26, 3923-9.   DOI
61 Doolan G, Benke G, Giles G (2014). An update on occupation and prostate cancer. Asian Pac J Cancer Prev, 15, 501-16.   DOI   ScienceOn
62 Eiro N, Bermudez-Fernandez S, Fernandez-Garcia B, et al (2014). Analysis of the expression of interleukins, interferon ${\beta}$, and nuclear factor-${\kappa}B$ in prostate cancer and their relationship with biochemical recurrence. J Immun, 37, 366-73.   DOI
63 Erho N, Crisan A, Vergara IA, et al (2013). Discovery and validation of a prostate cancer genomic classifier that predicts early metastasis following radical prostatectomy. PloS One, 8, 66855.   DOI
64 Fang J, Ding M, Yang L, et al (2007). PI3K/PTEN/AKT signaling regulates prostate tumor angiogenesis. Cellular Signal, 19, 2487-97.   DOI
65 Erkal EY, Bora H, Tepeoglu M, et al (2014). Role of vascular endothelial growth factor in clinically localized prostate cancer treated with radiation therapy. Balkan Med J, 31, 43-9.   DOI
66 Etzioni R, Penson DF, Legler JM, et al (2002). Overdiagnosis due to prostate-specific antigen screening: lessons from U.S. prostate cancer incidence trends. J Nat Cancer Inst, 94, 981-90.   DOI   ScienceOn
67 Euling SY, Kimmel CA (2001). Developmental stage sensitivity and mode of action information for androgen agonists and antagonists. Science Total Environ, 274, 103-13.   DOI
68 Ferdinandusse S, Denis S, Ijlst L, et al (2000). Subcellular localization and physiological role of ${\alpha}$-methylacyl-CoA racemase. J Lipid Res, 41, 1890-6.
69 Finne P, Auvinen A, Maattanen L, et al (2008). Diagnostic value of free prostate-specific antigen among men with a prostate-specific antigen level of <$3.0{\mu}g$ per liter. Eur Urol, 54, 241-482.   DOI
70 Freedland SJ, deGregorio F, Sacoolidge JC, et al (2003). Preoperative p27 status is an independent predictor of prostate specific antigen failure following radical prostatectomy. J Urol, 169, 1325-30.   DOI
71 Garg M, Dalela D, Goel A, et al (2014). Prevention of prostate cancer with vitamins-current perspectives. Asian Pac J Cancer Prev, 15, 1897-904.   DOI   ScienceOn
72 George DJ, Halabi S, Shepard TF, et al (2005). The prognostic significance of plasma interleukin-6 levels in patients with metastatic hormone-refractory prostate cancer: results from cancer and leukemia group B 9480. Clin Cancer Res, 11, 1815-20.   DOI   ScienceOn
73 Grignon DJ, Caplan R, Sarkar FH, et al (1997). p53 status and prognosis of locally advanced prostatic adenocarcinoma: a study based on RTOG 8610. J Natl Cancer Inst, 89, 158-65.   DOI
74 Globocan (2012). Prostate cancer: estimated incidence, mortality and prevalence worldwide in 2012 [Online]. Available: http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx.
75 Graefen M, Karakiewicz PI, Cagiannos I, et al (2002). Percent free prostate specific antigen is not an independent predictor of organ confinement or prostate specific antigen recurrence in unscreened patients with localized prostate cancer treated with radical prostatectomy. J Urol, 167, 1306-9.   DOI
76 Gravdal K, Halvorsen OJ, Haukaas SA, Akslen LA (2007). A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clin Cancer Res, 13, 7003-11.   DOI
77 Halvorsen OJ (2008). Molecular and prognostic markers in prostate cancer. A study of cell-cycle regulators, angiogenesis and candidate markers. APMIS Suppl, 5-62.
78 Han K-R, Seligson DB, Liu X, et al (2004). Prostate stem cell antigen expression is associated with gleason score, seminal vesicle invasion and capsular invasion in prostate cancer. J Urol, 171, 1117-21.   DOI   ScienceOn
79 Hara N, Kasahara T, Kawasaki T, et al (2002). Reverse transcription-polymerase chain reaction detection of prostate-specific antigen, prostate-specific membrane antigen, and prostate stem cell antigen in one milliliter of peripheral blood value for the staging of prostate cancer. Clin Cancer Res, 8, 1794-9.
80 Hicklin DJ, Ellis LM (2005). Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol, 23, 1011-27.
81 Ito K (2014). Prostate cancer in Asian men. Nat Rev Urol, 11, 197-212.   DOI
82 Howlader N, Noone AM, Krapcho M, et al (2011). SEER cancer statistics review, 1975-2008, national cancer institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2008/, based on November 2010 SEER data submission, posted to the SEER web site.
83 Ilyin SE, Belkowski SM, Plata-Salaman CR (2004). Biomarker discovery and validation: technologies and integrative approaches. Trends Biotechnol, 22, 411-6.   DOI
84 Isshiki S, Akakura K, Komiya A, et al (2002). Chromogranin a concentration as a serum marker to predict prognosis after endocrine therapy for prostate cancer. J Urol, 167, 512-5.   DOI
85 Jaggi M, Nazemi T, Abrahams NA, et al (2006). N-cadherin switching occurs in high Gleason grade prostate cancer. Prostate, 66, 193-9.   DOI
86 Jiang Z, Wu CL, Woda BA, et al (2004). Alpha-methylacyl-CoA racemase: a multi-institutional study of a new prostate cancer marker. Histopathol, 45, 218-25.   DOI
87 Jung K, Brux B, Lein M, et al (2000). Molecular forms of prostate-specific antigen in malignant and benign prostatic tissue: biochemical and diagnostic implications. Clin Chem, 46, 47-54.
88 Karnes RJ, Bergstralh EJ, Davicioni E, et al (2013). Validation of a genomic classifier that predicts metastasis following radical prostatectomy in an at risk patient population. J Urol, 190, 2047-53.   DOI
89 Kattan MW, Shariat SF, Andrews B, et al (2003). The addition of interleukin-6 soluble receptor and transforming growth factor beta1 improves a preoperative nomogram for predicting biochemical progression in patients with clinically localized prostate cancer. J Clin Oncol, 21, 3573-9.   DOI
90 Khan MO, Ather MH (2011). Chromogranin a serum marker for prostate cancer. JPMA, 61, 108-11.
91 Kim H-S, Ingermann AR, Tsubaki J, et al (2004). Insulin-like growth factor-binding protein 3 induces caspase-dependent apoptosis through a death receptor-mediated pathway in MCF-7 human breast cancer cells. Cancer Res, 64, 2229-37.   DOI
92 Kitagawa Y, Ueno S, Izumi K, et al (2014). Cumulative probability of prostate cancer detection in biopsy according to free/total PSA ratio in men with total PSA levels of 2.1-10.0 ng/ml at population screening. J Cancer Res Clin Oncol, 140, 53-9.   DOI
93 Klein EA, Cooperberg MR, Magi-Galluzzi C, et al (2014). A 17-gene assay to predict prostate cancer aggressiveness in the context of gleason grade heterogeneity, tumor multifocality, and biopsy undersampling. European Urol, 66, 550-60.   DOI
94 Koksal IT, Dirice E, Yasar D, et al (2004). The assessment of PTEN tumor suppressor gene in combination with Gleason scoring and serum PSA to evaluate progression of prostate carcinoma. Urol Oncol, 22, 307-12.   DOI
95 Kollermann J HB (2001). Expression of vascular endothelial growth factor (VEGF) and VEGF receptor Flk-1 in benign, premalignant, and malignant prostate tissue. Am J ClinPathol, 116, 115-21.
96 Kuczyk MA, Bokemeyer C, Hartmann J, et al (2001). Predictive value of altered p27Kip1 and p21WAF/Cip1 protein expression for the clinical prognosis of patients with localized prostate cancer. Oncol Reports, 8, 1401-7.
97 Kuniyasu H, Troncoso P, Johnston D, et al (2000). Relative expression of type IV collagenase, E-cadherin, and vascular endothelial growth factor/vascular permeability factor in prostatectomy specimens distinguishes organ-confined from pathologically advanced prostate cancers. Clin Cancer Res, 6, 2295-308.
98 Lawrence TS (2011). Cancer: Principles and Practice of Oncology. in eds Philadelphia, Pa: Lippincott Williams & Wilkins, 2011, 1220-71.
99 Laitinen S, Martikainen PM, Tolonen T, et al (2008). EZH2, Ki-67 and MCM7 are prognostic markers in prostatectomy treated patients. Intern J Cancer, 122, 595-602.   DOI
100 Larkin SET, Holmes S, Cree IA, et al (2012). Identification of markers of prostate cancer progression using candidate gene expression. Br J Cancer, 106, 157-65.   DOI
101 Li R, Heydon K, Hammond ME, et al (2004a). Ki-67 staining index predicts distant metastasis and survival in locally advanced prostate cancer treated with radiotherapy an analysis of patients in radiation therapy oncology group protocol 86-10. Clin Cancer Res, 10, 4118-24.   DOI
102 Li R, Younes M, Wheeler TM, et al (2004b). Expression of vascular endothelial growth factor receptor-3 (VEGFR-3) in human prostate. Prostate, 58, 193-9.   DOI
103 Li Y, Su J, DingZhang X, et al (2011). PTEN deletion and heme oxygenase-1 overexpression cooperate in prostate cancer progression and are associated with adverse clinical outcome. J Pathol, 224, 90-100.   DOI
104 Lin DW (2009). Beyond PSA: utility of novel tumor markers in the setting of elevated PSA. Urol Oncol, 27, 315-21.   DOI
105 Loeb S, Metter EJ, Kan D, Roehl KA, Catalona WJ (2012). Prostate-specific antigen velocity risk count improves the specificity of screening for clinically significant prostate cancer. BJU Int, 109, 508-13   DOI
106 Lopergolo A, Zaffaroni N (2009). Biomolecular markers of outcome prediction in prostate cancer. Cancer, 115, 3058-67.   DOI
107 Marika J. Linja, Savinainen KJ, Saramaki OR, et al (2001). Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res, 61.
108 Lotan TL, Gurel B, Sutcliffe S, et al (2011). PTEN protein loss by immunostaining: analytic validation and prognostic indicator for a high risk surgical cohort of prostate cancer patients. Clin Cancer Res, 17, 6563-73.   DOI   ScienceOn
109 Madu Co LY (2010). Novel diagnostic biomarkers for prostate cancer. J Cancer, 1, 150-77.
110 Aghaei M, Panjehpour M, Karami-Tehrani F, Salami S (2011). Molecular mechanisms of A3 adenosine receptor-induced G1 cell cycle arrest and apoptosis in androgen-dependent and independent prostate cancer cell lines: involvement of intrinsic pathway. J Cancer Res Clin Oncol, 137, 1511-23.   DOI
111 Mehta HH, Gao Q, Galet C, et al (2011). IGFBP-3 is a metastasis suppression gene in prostate cancer. Cancer Res, 71, 5154-63.   DOI
112 Michalaki V, Syrigos K, Charles P, et al (2004). Serum levels of IL-6 and TNF-${\alpha}$ correlate with clinicopathological features and patient survival in patients with prostate cancer. British J Cancer, 90, 2312-6.
113 Mohammed AA (2014). Biomarkers in prostate cancer: new era and prospective. Med Oncol, 31, 140.   DOI
114 Mulholland DJ, Tran LM, Li Y, et al (2011). Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth. Cancer Cell, 19, 792-804.   DOI
115 Nakashima J, Tachibana M, Horiguchi Y, et al (2000). Serum interleukin 6 as a prognostic factor in patients with prostate cancer. Clin Cancer Res, 6, 2702-6.
116 Patel DA, Presti JC, McNeal JE, et al (2005). Preoperative PSA velocity is an independent prognostic factor for relapse after radical prostatectomy. J Clin Oncol, 23, 6157-62.   DOI
117 Nixon RG, Wener MH, Smith KM, et al (1997). Biological variation of prostate specific antigen levels in serum: an evaluation of day-to-day physiological fluctuations in a well-defined cohort of 24 patients. J Urol, 157, 2183-90.   DOI   ScienceOn
118 Oxley JD, Winkler MH, Parry K, et al (2002). p53 and bcl-2 immunohistochemistry in preoperative biopsies as predictors of biochemical recurrence after radical prostatectomy. BJU Int, 89, 27-32.   DOI
119 Panjehpour M, Movahedian A, Sadeghi H, et al (2012). Adenosine receptor expression in two different human cancer cell lines at molecular level. Iranian J Cancer Prev, 3, 111-6.
120 Perry KT, Anthony CT, Case T, et al (1997). Transforming growth factor beta as a clinical biomarker for prostate cancer. Urology, 49, 151-5.   DOI
121 Pollack A, DeSilvio M, Khor LY, et al (2004). Ki-67 staining is a strong predictor of distant metastasis and mortality for men with prostate cancer treated with radiotherapy plus androgen deprivation: radiation therapy oncology group trial 92-02. J Clin Oncol, 22, 2133-40.   DOI
122 Quinn Di HsSMSRL (2005). Molecular markers of prostate cancer outcome. Eur J Cancer, 41, 858-87.   DOI
123 Ramirez ML, Nelson EC, Evans CP (2008). Beyond prostate-specific antigen: alternate serum markers. Prostate Cancer, 11, 216-29.   DOI
124 Reiter RE, Gu Z, Watabe T, et al (1998). Prostate stem cell antigen: A cell surface marker overexpressed in prostate cancer. Proceed Nat Acad Sci, 95, 1735-40.   DOI
125 Rittenhouse HG, Finlay JA, Mikolajczyk SD, et al (1998). human kallikrein 2 (hK2) and prostate-specific antigen (PSA): two closely related, but distinct, kallikreins in the prostate. Crc Cr Rev Cl Lab Sc, 35, 275-368.   DOI
126 Reiter RE, Sato I, Thomas G, et al (2000). Coamplification of prostate stem cell antigen (PSCA) and MYC in locally advanced prostate cancer. Genes, Chromosomes Cancer, 27, 95-103.   DOI
127 Riegman PHJ, Vlietstra RJ, Klaassen P, et al (1989). The prostate-specific antigen gene and the human glandular kallikrein-1 gene are tandemly located on chromosome 19. FEBS Letters, 247, 123-6.   DOI
128 Rigaud J, Tiguert R, Decobert M, et al (2004). Expression of p21 cell cycle protein is an independent predictor of response to salvage radiotherapy after radical prostatectomy. Prostate, 58, 269-76.   DOI
129 Rodriguez-Berriguete G, Sanchez-Espiridion B, Cansino JR, et al (2013). Clinical significance of both tumor and stromal expression of components of the IL-1 and TNF-${\alpha}$ signaling pathways in prostate cancer. Cytokine, 64, 555-63.   DOI
130 Rosner IL, Ravindranath L, Furusato B, et al (2007). Higher tumor to benign ratio of the androgen receptor mRNA expression associates with prostate cancer progression after radical prostatectomy. Urology, 70, 1225-9.   DOI
131 Ross JS, Jennings TA, Nazeer T, et al (2003). Prognostic factors in prostate cancer. Am J Clin Pathol, 120, 85-100.
132 Rubin MA, Mucci NR, Figurski J, et al (2001). E-cadherin expression in prostate cancer: A broad survey using high-density tissue microarray technology. Human Pathol, 32, 690-7.   DOI