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Ovarian cancer is one of the leading causes of cancer-related deaths in gynecological malignancies. Over 70% of ovarian 
cancer cases are high-grade serous ovarian cancers and have high death rates due to their resistance to chemotherapy. 
Despite advances in surgical and pharmaceutical therapies, overall survival rates are not good, and making an accurate 
prediction of the prognosis is not easy because of the highly heterogeneous nature of ovarian cancer. To improve the 
patient’s prognosis through proper treatment, we present a prognostic prediction model by integrating high-dimensional 
RNA sequencing data with their clinical data through the following steps: gene filtration, pre-screening, gene marker 
selection, integrated study of selected gene markers and prediction model building. These steps of the prognostic prediction 
model can be applied to other types of cancer besides ovarian cancer.
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Introduction

The genetic background of patients with complex 
diseases, such as cancer, has been continually studied. 
Traditional attempts mainly focus on finding unique 
differentially expressed genes (DEGs) for diagnosis or 
survival times using microarray techniques [1, 2]. Genetic 
markers can be indicators of the activity state of a pathway of 
therapy, showing their potential as prognostic predictors for 
specific treatments. Ovarian cancer, especially high-grade 
serous ovarian cancer (HGSC), is one of the most lethal 
gynecological malignancies in women. Vague symptoms and 
a lack of robust biomarkers for detection are the main causes 
of difficulties in making an early diagnosis. Major factors 
associated with the poor prognosis and poor management of 
ovarian cancers include the late discovery of the disease, 
chemotherapy resistance, and a lack of clinical variables that  
are crucial for accurate prognostic predictions [3]. Thus, 
there is a need to identify new biomarkers that can be used 
to improve the treatment of ovarian cancer patients [4].

Previous studies have mainly focused on identifying novel 
molecular markers or subtyping through molecular markers 
of HGSC [5,6]. In this study, we aim to identify clinical and 
genetic markers of the prognosis of HGSC. Through 
analyzing high-dimensional genetic information, we can 
gain a better understanding of HGSC and its biological 
mechanism. For cancers with a poor prognosis, genetic 
information can be effective in improving the prognosis of 
patients based only on clinical information [3]. 

Next-generation sequencing (NGS) technology has made 
it possible to generate mRNA expression data for the tens of 
thousands of genes from only a few hundred samples [7]. 
These RNA sequencing (RNA-Seq) data have the advantage 
of knowing the sequence count directly, without being 
affected by the background noise, unlike microarray data. 
RNA-Seq data also contain more genes to discover than 
microarray data. High-throughput NGS-based tumor genome 
profiling has significantly advanced our understanding of the 
molecular variability exhibited by tumors.

However, the nature of RNA-Seq data, consisting of 
non-negative count data, requires a new predictive model 
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that differs from that of microarray data. For RNA-Seq data, 
it is difficult to apply a traditional statistical approach 
because of its relatively small number of samples compared 
with the large number of genes. Therefore, we present a 
process for finding genes that play important roles in the 
outcome and specific procedures for designing and 
evaluating a model, based on the characteristics of RNA-Seq 
data. 

The purpose of this study is to find gene markers that can 
significantly affect the prognosis, when analyzing RNA-Seq 
data, and to present a protocol that can improve the 
predictive performance using transcription data by integrating 
clinical information. Specifically, we present a protocol to 
build a prediction model for the prognosis of HGSC, 
including (1) selection of markers and clinical variables and 
(2) model construction and evaluation.

Methods

The data used in this study were clinical information and 
RNA-Seq data from The Cancer Genome Atlas (TCGA) 
Genomic Data Commons (GDC) portal (https://portal.gdc. 
cancer.gov). The National Institutes of Health (NIH)’s 
TCGA webpage provides clinical information, biomedical 
slide images, molecular information, CpG methylation 
information, DNA copy number, mRNA expression, and 
miRNA expression. RNA-Seq data were used, because large 
amounts of gene expression could be explored collectively 
from samples in the study. We downloaded genomic 
alteration data and expression data in patients with 
high-grade serous ovarian cancer and the corresponding 
clinicopathological profiles from the Genomic Data 
Commons (https://portal.gdc.cancer.gov), Firebrowse 
(http://firebrowse.org), and cBioPortal for Cancer Genomics 
(http://www.cbioportal.org) web portals. This study complied 
with TCGA publication guidelines and policies (http:// 
cancergenome.nih.gov/publications/publicationguidelines). 
The Institutional Review Board of Seoul National University 
Hospital ruled that no formal ethical approval was required 
in this study.

Survival time refers to the period from the diagnosis of 
HGSC in patients to death. Clinical variables were selected, 
based on their influence on the outcome. Among 365 HGSC 
cases, the median survival time for the samples was 43.9 
months, and the censoring proportion of the data was 55%. 

Pre-processing

HGSC patient data collected from the GDC portal can be 
separated into two categories. Since RNA-seq data from the 
GDC portal consist of raw count data, normalization was 
required to control for the sample bias and gene length bias. 

Two common normalization methods were applied. The first 
method is called relative long expression (RLE) nor-
malization, implemented in the R package “Deseq2” [8], 
which is also implemented in the R package “edgeR” [9]. The 
RLE method utilizes the geometric mean of the read count, 
whereas the TMM method estimates normalizing factors 
after extreme expressions are removed to get more a robust 
estimation. A simple simulation study for DEGs has been 
performed for comparison [10]. Both methods were used to 
give more specific comparison results in the model building. 

Since the clinical data had many missing values, we 
imputed missing clinical variables with the R package 
“mice,” which performs chained equations to find estimates 
for missing values using Gipps sampling [11]. There were no 
tendencies in the missing values; so, the missing-at-random 
assumption was applied [11]. After imputation, significant 
clinical variables were chosen using a Cox regression model 
via stepwise selection methods. 

Clinical data and RNA-Seq data were integrated and 
divided into training and test sets. To avoid unwanted effects 
of censoring, balanced sampling in terms of censoring status 
was used to make the training and test sets have the same 
censoring rate.

Analysis plan

In this study, we considered a prediction model and 
process in terms of performance and interpretability. The 
main steps of our analysis were as follows: (1) gene 
filtration, (2) pre-screening, (3) gene marker selection, and 
(4) integrated study of selected gene markers and the final 
prediction model.

Gene filtration

Gene filtration for low expression is important because it 
can reduce false positives [12]. Sampling noise that is added 
during the sequencing process can also be removed by gene 
filtration. In this study, a 20% zero proportion threshold was 
selected, as this value is commonly chosen in previous 
studies [13]. Gene filtration was performed only on the 
training set.

Pre-screening

Pre-screening of gene markers was used after gene 
filtration. This process is necessary for actual computation 
and controlling false positives. Unsupervised filtering using 
median absolute deviation (MAD) was used. MAD is widely 
used in microarray data and single-cell RNA-Seq data as a 
pre-screening method. This measure can be used to select 
more variable genes. Compared with standard deviation, 
MAD is a more robust measure [14]. Since the raw count 
data consist of sparse and non-negative numbers, MAD was 
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Table 1. Descriptive statistics for clinical information

Variable name Variable type Descriptive statistics No. of missing Missing rate (%)

Sex Binary Female: 365, Male: 0 - -
Age Count Mean: 60.07

Standard deviation: 11.29
8 2.19

Race Category White: 324, non-white: 41 10 2.74
Neoplasm histologic grade Category G2: 42, G3: 315 8 2.19
Primary therapy
Outcome success

Category Complete response: 203
Partial response: 43
Progressive disease: 27
Stable disease: 22

70 19.18

Tumor stage Category II: 20, III: 288, IV: 55 2 0.55
Tumor residual disease Category 1–10 mm: 169, 11–20 mm: 26

More than 20 mm: 69
No macroscopic disease: 63

38 10.41

Platinum status Category Resistant: 63
Sensitive: 151
Too early: 47

104 28.49

used to represent variability. The genes with MAD were 
selected for model building.

Another supervised pre-screening method was used, 
based on univariate Cox regression with adjustment of 
clinical variables. This Cox regression procedure was 
performed only for the training set to avoid overfitting. Next, 
genes were selected, based on individual p-values. Both 
methods were jointly applied to select candidate gene 
markers.

Gene selection

Although the pre-screening process greatly reduced the 
number of genes, there remained the problem of an ill-posed 
model, since the sample size was very small compared to the 
number of features. Therefore, sequential variable selection 
using a multiple Cox regression model was not applicable. To 
solve such a problem, as presented below, multiple Cox 
regression using penalized partial likelihood was used for 
variable selection and shrinkage estimation.

 = argminβ 
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variables more favorably, since some clinical variables have 
already been reported to be significant.

Pγ,α,λ(β) = 
∑  
     

   ∑  
     

 

 
Thus, the penalty factor γ is used to reduce the penalty of 

clinical variables.
The partial likelihood estimation process explained above 

is implemented in the R package “glmnet,” also known as 
“coxnet” [15]. 

Prediction model building and detailed study of 
selected genes

Along with selected genetic markers and clinical variables 
we fitted a multiple Cox regression model. For further 
integrated study of the selected gene markers, we grouped 
patients into two groups in terms of fitted hazard ratios as 
high- and low-risk groups. Then, log rank test was performed 
to test for homogeneity of survival rates between the two 
groups. Also, a functional study for the selected gene 
markers using a pathway database was provided for 
biological understanding [16].

Results 

To build and validate the prediction models, the whole 
dataset was divided into training and test datasets at a 2:1 
ratio.

Clinical results

Descriptive statistics of the clinical information are 
summarized in Table 1. First, all categorical variables were 
represented by dummy variables. Note that each variable has 
less than 30% of observations missing. When we put all 
variables together, however, they made up more than 
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Table 2. Variable selection results for clinical variables

Variable name Coefficient Exp(coef) se(coef) z Pr(＞|z|)

P. Therapy outcome: complete response −0.52334 0.592538 0.252489 −2.073 0.0382
P. Therapy outcome: progressive disease   0.57476 1.776705 0.283553 2.027 0.0427
Tumor residual: ＞20 mm   0.135709 1.145349 0.219691 0.618 0.5368
Tumor stage: IIC −1.28502 0.276646 0.729785 −1.761 0.0783
Age   0.014672 1.014781 0.007917 1.853 0.0639
Platinum status: resistant   1.040858 2.831644 0.241527 4.309 1.64E-05

Table 3. Selected gene markers using modified penalized Cox regression

Method Tuning parameter Selected marker Coefficient 

LASSO with Lambda: 0.1743 REN (ENSG00000143839) −2.64 × 10−5

Penalty factor on clinical variables Gamma: 0.3
Alpha: 1

LEFTY1 (ENSG00000243709)
AP1S2 (ENSG00000182287)

−3.51 × 10−6

−5.32 × 10−5

Fig. 1. Survival curve based on 
predicted values (3 genetic markers 
with 6-clinical-variable adjustment, 
time unit is month).

40.55% of observations with at least one variable missing. To 
include cases with missing variables, imputation was 
performed using the “mice” package.

Variable selection of clinical variables was performed for 
Cox regression by using stepwise selection procedures. The 
results are summarized in Table 2. A total of 6 clinical 
variables were chosen out of 26 variables. Among the 6 
variables, platinum status and primal therapy outcome were 
significant for prognosis at a 5% significance level.

Gene marker selection

After applying a 20% zero proportion threshold for 
filtration, a total of 42,747 genes were selected. For ease of 
interpretation, only protein-coding genes and microRNA 
genes, which numbered up to 18,415 genes, were used. We 
performed two pre-screening processes. The first one used  
MAD.

Genes with MAD under the 10% quantile were filtered out 
to control false positives. The second filtering was performed 

using p-values of the gene markers. After that, genes with 
p-values larger than 0.3 were removed. After the pre- 
screening, 6,161 genes remained. We then fit the modified 
penalized Cox regression model as explained in the Methods 
section. Among the many values, 0.2 was chosen as the 
gamma parameter to be effective for both marker selection 
and prediction in this study. Finally, three genes—REN, 
LEFTY1, and AP1S2—were selected, along with 6 clinical 
variables. These selected markers are summarized in Table 3.

Integrated study of selected gene markers 

Along with the selected genetic markers and clinical 
variables, we fitted a multiple Cox regression model. The 
genetic markers chosen for the final model were REN, 
LEFTY1, and AP1S2. From the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway database [16], we found out 
that these genes belong to the following pathways, 
respectively: KEGG RENIN ANGIOTENSIN SYSTEM, 
KEGG TGF BETA SIGNALING PATHWAY, and KEGG 
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Table 5. Model coefficients and inferences for proposed model

coef exp(coef) se(coef) z Pr(＞|z|)

P. Therapy outcome: complete response −6.00E-01 5.49E-01 2.48E-01 −2.417 0.0157
P. Therapy outcome: progressive disease   5.18E-01 1.68E＋00 2.87E-01 1.805 0.0711
Tumor residual: ＞20 mm   7.14E-02 1.07E＋00 2.21E-01 0.324 0.7463
Tumor stage: IIC −1.22E＋00 2.95E-01 7.31E-01 −1.672 0.0946
Age   1.93E-02 1.02E＋00 7.89E-03 2.441 0.0147
Platinum status, resistant   1.05E＋00 2.87E＋00 2.34E-01 4.505 6.65E-06
REN −3.81E-04 1.00E＋00 2.36E-04 −1.615 0.1063
LEFTY1 −1.22E-04 1.00E＋00 7.35E-05 −1.657 0.0975
AP1S2 −9.93E-04 9.99E-01 6.75E-04 −1.471 0.1414

Fig. 2. Time-dependent receiver operating characteristic (ROC) 
curves of the three models for the test dataset.

Table 4. Comparison of prediction with 3 methods: M1, M2, and M3

Method Training C-index Training AUC (2 years) AIC Test C-index Test AUC (2 years)

M1 0.715 0.797 1,129.668 0.687 0.802
M2 0.763 0.804 - 0.642 0.700
M3 0.731 0.771 1,105.292 0.6953 0.813

AUC, area under the receiver operating characteristic curve; AIC, Akaike’s information criterion.

LYSOSOME. The false discovery rate q-values from the 
univariate Cox regression with a single gene were 0.693, 
0.687, and 0.138, respectively. These q-values mean that 
those genetic markers cannot be selected through the false 
discovery rate procedure with a level of 0.1 via univariate Cox 
regression. 

For further integrated study of the selected gene markers, 
we grouped patients into two groups—high- and low-risk— 
using the fitted hazard ratios. As shown in Fig. 1, the two 
groups were well separated, with a log-rank test p-value of 
8.02×10−6. We could see that our model predicts the 
prognosis of patients quite well. The three selected genes 
have been reported to have an association with ovarian 
cancer in previous studies. The renin-angiotensin system 
works as an angiogenic factor through type 1 angiotensin 
receptors. These angiogenic factors have a correlation with 
ovarian cancer patient survival [17]. Lefty1 is an activator of 
the TCEA3 gene, the expression of which is related to cell 
death in ovarian cancer [18]. Lastly, AP1S2 has been 
reported as a prognostic marker of ovarian cancer, and its 
expression level is differentially changed in drug-resistant 
cell lines [19, 20].

Prediction model results

Two measures of assessment were considered. One was 
Harrell’s concordance index, and the other was the 2-year 
time-dependent area under the receiver operating charac-
teristic curve (AUC) [21, 22]. For purposes of comparison, 
we considered three models: a multiple Cox model with only 
clinical variables (M1), penalized Cox regression (M2), and 
our proposed method (M3). Table 4 shows the C-index and 

time-dependent AUC of each model. Among the three 
models, penalized Cox regression M2 showed even worse 
results than M1 alone with the clinical variables, whereas 
our method, M3, showed the best performance. 

The time-dependent receiver operating characteristic 
curves for the training sets and test sets are shown in Fig. 2. 
In most of the range of Fig. 2, the curve of M3 is higher than 
the other curves on in the upper left corner, showing better 
performance with regard to prognostic prediction.

Discussion

In this study, we presented the process of building 
prediction models, based on clinical variables and high- 
dimensional RNA-Seq data for HSGC patients provided by 
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the TCGA GDC portal. The specific steps were as follows: 
gene filtration, pre-screening, gene marker selection, and 
integrated study of selected gene markers with the final 
prediction model.

To put more emphasis on the clinical variables, we applied 
modified penalized Cox regression. We first selected clinical 
variables that had major impacts on the survival outcome of 
HGSC, and then, we found genes using these clinical 
variables with higher weights than genes in the penalized 
Cox regression. As shown in Table 5, six clinical variables 
and three genes were chosen as the markers for prognostic 
prediction. While these three genes were reported to be 
associated with HGSC, no significant results were found in 
the single-gene analysis.

When analyzing data, a single marker alone may not be 
sufficient to explain the outcome. For example, the RENIN 
gene itself cannot distinguish survival patterns of ovarian 
cancer patients well. However, a model that includes 
additional gene markers can contribute to improving the 
predictability by further explaining the areas that cannot be 
explained by clinical variables [20].

Furthermore, it is important to keep in mind that the issue 
of false positives can arise, since the analysis is conducted 
with a relatively small number of samples compared to the 
number of genes. Therefore, it is important to determine 
which genes to use in the Cox model by considering the 
appropriate gene filtering criteria. 

We proposed procedures for building prediction models 
for predicting survival outcomes by integrating RNA-Seq 
data and clinical information for HGSC. The approach in this 
study is general, in the sense that it may not be highly 
dependent on the characteristics of the cancer type or other 
types of biomarkers. Therefore, this predictive model 
development process could be easily applied to other types of 
cancer. 

In the future, we hope to apply our approach to other types 
of genomic data, such as DNA methylation and copy number 
alterations. In addition, we want to build our integrative 
prediction model to predict survival times more accurately 
for other cancer patients. 
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