• 제목/요약/키워드: Cancer Metabolism

검색결과 502건 처리시간 0.036초

Metabolism and excretion of novel pulmonary-targeting docetaxel liposome in rabbits

  • Wang, Jie;Zhang, Li;Wang, Lijuan;Liu, Zhonghong;Yu, Yu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권1호
    • /
    • pp.45-54
    • /
    • 2017
  • Our study aims to determine the metabolism and excretion of novel pulmonary-targeting docetaxel liposome (DTX-LP) using the in vitro and in vivo animal experimental models. The metabolism and excretion of DTX-LP and intravenous DTX (DTX-IN) in New Zealand rabbits were determined with ultra-performance liquid chromatography tandem mass spectrometry. We found DTX-LP and DTX-IN were similarly degraded in vitro by liver homogenates and microsomes, but not metabolized by lung homogenates. Ultra-performance liquid chromatography tandem mass spectrometry identified two shared DTX metabolites. The unconfirmed metabolite $M_{un}$ differed structurally from all DTX metabolites identified to date. DTX-LP likewise had a similar in vivo metabolism to DTX-IN. Conversely, DTX-LP showed significantly diminished excretion in rabbit feces or urine, approximately halving the cumulative excretion rates compared to DTX-IN. Liposomal delivery of DTX did not alter the in vitro or in vivo drug metabolism. Delayed excretion of pulmonary-targeting DTX-LP may greatly enhance the therapeutic efficacy and reduce the systemic toxicity in the chemotherapy of non-small cell lung cancer. The identification of $M_{un}$ may further suggest an alternative species-specific metabolic pathway.

Translation and Validation of the Activities of Daily Living Scale with Iranian Elderly Cancer Patients Treated in an Oncology Unit

  • Khoei, Mahtab Alizadeh;Akbari, Mohammad Esmail;Sharifi, Farshad;Fakhrzadeh, Hossein;Larijani, Bagher
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권5호
    • /
    • pp.2731-2737
    • /
    • 2013
  • Background: This study evaluated the validity and reliability of applying the Katz's Activities of Daily Living (ADL) scale in an Iranian sample of elderly oncologic patients following initial cancer treatment. Materials and Methods: The scale was translated with the forward-backward procedure to give an Iranian version. The ADL scale was then applied in a random sample of 400 oncologic patients aged 60 and older following initial cancer treatment. Assessment of the scale stability was twice, with a 14-days (two weeks) interval, to 30 (of the 400) eligible elderly cancer patients in March 2012. To measure treatment effects, the index was run with 150 patients in a three month recall, following oncology processing. Exploratory and confirmatory factor analysis was performed for assessment of construct validity of the Katz's ADL. Reliability was measured with internal consistency (Cronbach's alpha co-efficient), and test/retest (Spearman's r value) of the instrument. Criterion validity was evaluated by comparing the Katz with Physical Function (PF) subscale of SF 36. Known-group validity was approved by comparing of Katz' ADL between quartile groups of PF subscale of SF 36. Results: In our study the ADL demonstrated a high degree of internal homogeneity (Cronbach's alpha 0.923). There was a high correlation between scores of two time measurement of Katz's ADL (p value of two- related- samples test was 0.3). Construct validity showed a correlation coefficient of 0.572 between the ADL and PF scores. In factor analysis, 2 factors were extracted. Evidence for the reliability of the questionnaire was good and known group validity was approved by significant differences of ADL score between quartiles of the PF subscale of SF36. Conclusions: The results suggest that the Iranian version of ADL applied for oncologic older adult patients following initial cancer treatment is a reliable and a valid clinical instrument and comparable to those reported in other studies.

Nuclear Receptor PPARα Agonist Wy-14,643 Ameliorates Hepatic Cell Death in Hepatic IKKβ-Deficient Mice

  • Kim, Taehyeong;Wahyudi, Lilik Duwi;Gonzalez, Frank J.;Kim, Jung-Hwan
    • Biomolecules & Therapeutics
    • /
    • 제25권5호
    • /
    • pp.504-510
    • /
    • 2017
  • Inhibitor of nuclear factor kappa-B kinase beta ($IKK{\beta}$) plays a critical role in cell proliferation and inflammation in various cells by activating $NF-{\kappa}B$ signaling. However, the interrelationship between peroxisome proliferator-activated receptor ${\alpha}$ ($PPAR{\alpha}$) and $IKK{\beta}$ in cell proliferation is not clear. In this study, we investigated the possible role of $PPAR{\alpha}$ in the hepatic cell death in the absence of $IKK{\beta}$ gene using liver-specific Ikkb-null ($Ikkb^{F/F-AlbCre}$) mice. To examine the function of $PPAR{\alpha}$ activation in hepatic cell death, wild-type ($Ikkb^{F/F}$) and $Ikkb^{F/F-AlbCre}$ mice were treated with $PPAR{\alpha}$ agonist Wy-14,643 (0.1% w/w chow diet) for two weeks. As a result of Wy-14,643 treatment, apoptotic markers including caspase-3 cleavage, poly (ADP-ribose) polymerase (PARP) cleavage and TUNEL-positive staining were significantly decreased in the $Ikkb^{F/F-AlbCre}$ mice. Surprisingly, Wy-14,643 increased the phosphorylation of p65 and STAT3 in both Ikkb and $Ikkb^{F/F-AlbCre}$ mice. Furthermore, BrdU-positive cells were significantly increased in both groups after treatment with Wy-14,643. Our results suggested that $IKK{\beta}-derived$ hepatic apoptosis could be altered by $PPAR{\alpha}$ activation in conjunction with activation of $NF-{\kappa}B$ and STAT3 signaling.

Gene Microarray Assessment of Multiple Genes and Signal Pathways Involved in Androgen-dependent Prostate Cancer Becoming Androgen Independent

  • Liu, Jun-Bao;Dai, Chun-Mei;Su, Xiao-Yun;Cao, Lu;Qin, Rui;Kong, Qing-Bo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권22호
    • /
    • pp.9791-9795
    • /
    • 2014
  • To study the gene expression change and possible signal pathway during androgen-dependent prostate cancer (ADPC) becoming androgen-independent prostate cancer (AIPC), an LNCaP cell model of AIPC was established using flutamide in combination with androgen-free environment inducement, and differential expression genes were screened by microarray. Then the biological process, molecular function and KEGG pathway of differential expression genes are analyzed by Molecule Annotation System (MAS). By comparison of 12,207 expression genes, 347 expression genes were acquired, of which 156 were up-ragulated and 191 down-regulated. After analyzing the biological process and molecule function of differential expression genes, these genes are found to play crucial roles in cell proliferation, differntiation, cell cycle control, protein metabolism and modification and other biological process, serve as signal molecules, enzymes, peptide hormones, cytokines, cytoskeletal proteins and adhesion molecules. The analysis of KEGG show that the relevant genes of AIPC transformation participate in glutathione metabolism, cell cycle, P53 signal pathway, cytochrome P450 metabolism, Hedgehog signal pathway, MAPK signal pathway, adipocytokines signal pathway, PPAR signal pathway, TGF-${\beta}$ signal pathway and JAK-STAT signal pathway. In conclusion, during the process of ADPC becoming AIPC, it is not only one specific gene or pathway, but multiple genes and pathways that change. The findings above lay the foundation for study of AIPC mechanism and development of AIPC targeting drugs.

SMAD4 Controls Cancer Cell Metabolism by Regulating Methylmalonic Aciduria Cobalamin Deficiency (cbl) B Type

  • Song, Kyoung;Lee, Hun Seok;Jia, Lina;Chelakkot, Chaithanya;Rajasekaran, Nirmal;Shin, Young Kee
    • Molecules and Cells
    • /
    • 제45권6호
    • /
    • pp.413-424
    • /
    • 2022
  • Suppressor of mothers against decapentaplegic homolog (SMAD) 4 is a pluripotent signaling mediator that regulates myriad cellular functions, including cell growth, cell division, angiogenesis, apoptosis, cell invasion, and metastasis, through transforming growth factor β (TGF-β)-dependent and -independent pathways. SMAD4 is a critical modulator in signal transduction and functions primarily as a transcription factor or cofactor. Apart from being a DNA-binding factor, the additional SMAD4 mechanisms in tumor suppression remain elusive. We previously identified methyl malonyl aciduria cobalamin deficiency B type (MMAB) as a critical SMAD4 binding protein using a proto array analysis. This study confirmed the interaction between SMAD4 and MMAB using bimolecular fluorescence complementation (BiFC) assay, proximity ligation assay (PLA), and conventional immunoprecipitation. We found that transient SMAD4 overexpression down-regulates MMAB expression via a proteasome-dependent pathway. SMAD4-MMAB interaction was independent of TGF-β signaling. Finally, we determined the effect of MMAB downregulation on cancer cells. siRNA-mediated knockdown of MMAB affected cancer cell metabolism in HeLa cells by decreasing ATP production and glucose consumption as well as inducing apoptosis. These findings suggest that SMAD4 controls cancer cell metabolism by regulating MMAB.

γ-Aminobutyric Acid Metabolism in Plant under Environment Stressses

  • Ham, Tae-Ho;Chu, Sang-Ho;Han, Sang-Jun;Ryu, Su-Noh
    • 한국작물학회지
    • /
    • 제57권2호
    • /
    • pp.144-150
    • /
    • 2012
  • ${\gamma}$-Aminobutyric acid (GABA) is a non-protein amino acid that is widely distributed in plant and animal kingdom. GABA is found in tissues of the central nervous system (CNS) in animals. GABA functions as a the major inhibitory neurotransmitter in the CNS by acting through the GABA receptors. Clinical studies have revealed the relationship between an increased intake of GABA or analogues with several health benefits, including lowering of blood pressure in mildly hypertensive animals and humans. Furthermore, GABA would also has an inhibitory effect on cancer cell proliferation, stimulates cancer cell apoptosis and plays a role in alcohol-associated diseases and schizophrenia. In plants, interest in the GABA emerged mainly from experimental observations that GABA is largely and rapidly produced in large amounts in response to biotic and abiotic stresses. In this study, we speculated the properties and metabolism of GABA in plant and functions in relation to the responses to environmental stresses.

Mechanisms Underlying Plk1 Polo-Box Domain-Mediated Biological Processes and Their Physiological Significance

  • Lee, Kyung S.;Park, Jung-Eun;Kang, Young Hwi;Kim, Tae-Sung;Bang, Jeong K.
    • Molecules and Cells
    • /
    • 제37권4호
    • /
    • pp.286-294
    • /
    • 2014
  • Mammalian polo-like kinase 1 (Plk1) has been studied intensively as a key regulator of various cell cycle events that are critical for proper M-phase progression. The polobox domain (PBD) present in Plk1's C-terminal noncatalytic region has been shown to play a central role in targeting the N-terminal kinase domain of Plk1 to specific subcellular locations. Subsequent studies reveal that PBD binds to a phosphorylated motif generated by one of the two mechanisms - self-priming by Plk1 itself or non-self-priming by a Pro-directed kinase, such as Cdc2. Here, we comparatively review the differences in the biochemical steps of these mechanisms and discuss their physiological significance. Considering the diverse functions of Plk1 during the cell cycle, a better understanding of how the catalytic activity of Plk1 functions in concert with its cisacting PBD and how this coordinated process is intricately regulated to promote Plk1 functions will be important for providing new insights into different mechanisms underlying various Plk1-mediated biological events that occur at the multiple stages of the cell cycle.

The Level of Serum Cholesterol is Negatively Associated with Lean Body Mass in Korean non-Diabetic Cancer Patients

  • Han, Ji Eun;Lee, Jun Yeup;Bu, So Young
    • Clinical Nutrition Research
    • /
    • 제5권2호
    • /
    • pp.126-136
    • /
    • 2016
  • Due to poor nutrition and abnormal energy metabolism, cancer patients typically experience the loss of muscle mass. Although the diabetic conditions or dyslipidemia have been reported as a causal link of cancer but the consequence of such conditions in relation to gain or loss of skeletal muscle mass in cancer patients has not been well documented. The purpose of this study was to investigate the relationship of lean body mass and systemic parameters related to lipid metabolism in non-diabetic cancer patients using data from the Korean National Health and Nutrition Examination Survey (KNHANES) 2008-2011. As results the level of serum total cholesterol (total-C) was negatively associated with both total lean body mass and appendicular lean body mass in cancer patients after adjustment for sex, physical activity, energy intake and comorbidity. The associations between consumption of dietary factors (energy, carbohydrate, protein and fat) and lean body mass were disappeared after adjusting comorbidities of cancer patients. Multivariate-adjusted linear regression analysis by quartiles of serum total-C showed that higher quartile group of total-C had significantly lower percent of lean body mass than reference group in cancer patients. The data indicate that serum lipid status can be the potential estimate of loss of skeletal muscle mass in cancer patients and be referenced in nutrition care of cancer patients under the onset of cachexia or parenteral/enteral nutrition. This data need to be confirmed with large pool of subjects and should be specified by stage of cancer or the site of cancer in future studies.

Lipid Metabolism, Disorders and Therapeutic Drugs - Review

  • Natesan, Vijayakumar;Kim, Sung-Jin
    • Biomolecules & Therapeutics
    • /
    • 제29권6호
    • /
    • pp.596-604
    • /
    • 2021
  • Different lifestyles have an impact on useful metabolic functions, causing disorders. Different lipids are involved in the metabolic functions that play various vital roles in the body, such as structural components, storage of energy, in signaling, as biomarkers, in energy metabolism, and as hormones. Inter-related disorders are caused when these functions are affected, like diabetes, cancer, infections, and inflammatory and neurodegenerative conditions in humans. During the Covid-19 period, there has been a lot of focus on the effects of metabolic disorders all over the world. Hence, this review collectively reports on research concerning metabolic disorders, mainly cardiovascular and diabetes mellitus. In addition, drug research in lipid metabolism disorders have also been considered. This review explores lipids, metabolism, lipid metabolism disorders, and drugs used for these disorders.

Regulation of mitochondrial morphology and metabolism by Jak-STAT pathway

  • Rhee, Kun Do
    • 한국동물생명공학회지
    • /
    • 제36권4호
    • /
    • pp.189-193
    • /
    • 2021
  • Jak-STAT pathway is required for embryogenesis, female gametogenesis, cytokine-mediated neuroprotection, diabetes, obesity, cancer, stem cell, and various tissues. The noncanonical role of Jak-STAT in mitochondria function was supported by the detection of STAT protein in mitochondria, however, several studies show that STAT protein is detected in the endoplasmic reticulum (ER), and not in mitochondria. STAT protein may alter mitochondria function without entering mitochondria, this involves regulation of fission and fusion proteins to change mitochondria morphology. However, how changes in mitochondria morphology lead to changes in mitochondria metabolism needs further investigation.