DOI QR코드

DOI QR Code

Nuclear Receptor PPARα Agonist Wy-14,643 Ameliorates Hepatic Cell Death in Hepatic IKKβ-Deficient Mice

  • Kim, Taehyeong (Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health) ;
  • Wahyudi, Lilik Duwi (Department of Pharmacology and Graduate School of Convergence Medical Science, School of Medicine, Institute of Health Sciences, Gyeongsang National University) ;
  • Gonzalez, Frank J. (Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health) ;
  • Kim, Jung-Hwan (Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health)
  • Received : 2016.09.22
  • Accepted : 2016.12.06
  • Published : 2017.09.01

Abstract

Inhibitor of nuclear factor kappa-B kinase beta ($IKK{\beta}$) plays a critical role in cell proliferation and inflammation in various cells by activating $NF-{\kappa}B$ signaling. However, the interrelationship between peroxisome proliferator-activated receptor ${\alpha}$ ($PPAR{\alpha}$) and $IKK{\beta}$ in cell proliferation is not clear. In this study, we investigated the possible role of $PPAR{\alpha}$ in the hepatic cell death in the absence of $IKK{\beta}$ gene using liver-specific Ikkb-null ($Ikkb^{F/F-AlbCre}$) mice. To examine the function of $PPAR{\alpha}$ activation in hepatic cell death, wild-type ($Ikkb^{F/F}$) and $Ikkb^{F/F-AlbCre}$ mice were treated with $PPAR{\alpha}$ agonist Wy-14,643 (0.1% w/w chow diet) for two weeks. As a result of Wy-14,643 treatment, apoptotic markers including caspase-3 cleavage, poly (ADP-ribose) polymerase (PARP) cleavage and TUNEL-positive staining were significantly decreased in the $Ikkb^{F/F-AlbCre}$ mice. Surprisingly, Wy-14,643 increased the phosphorylation of p65 and STAT3 in both Ikkb and $Ikkb^{F/F-AlbCre}$ mice. Furthermore, BrdU-positive cells were significantly increased in both groups after treatment with Wy-14,643. Our results suggested that $IKK{\beta}-derived$ hepatic apoptosis could be altered by $PPAR{\alpha}$ activation in conjunction with activation of $NF-{\kappa}B$ and STAT3 signaling.

Keywords

References

  1. Baldwin, A. S. (2012) Regulation of cell death and autophagy by IKK and NF-${\kappa}B$: critical mechanisms in immune function and cancer. Immunol. Rev. 246, 327-345. https://doi.org/10.1111/j.1600-065X.2012.01095.x
  2. Chakravarthy, M. V., Lodhi, I. J., Yin, L., Malapaka, R. R., Xu, H. E., Turk, J. and Semenkovich, C. F. (2009) Identification of a physiologically relevant endogenous ligand for $PPAR{\alpha}$ in liver. Cell 138, 476-488. https://doi.org/10.1016/j.cell.2009.05.036
  3. Choi, Y., Kim, J. K. and Yoo, J. Y. (2014) $NF{\kappa}B$ and STAT3 synergistically activate the expression of FAT10, a gene counteracting the tumor suppressor p53. Mol. Oncol. 8, 642-655. https://doi.org/10.1016/j.molonc.2014.01.007
  4. Christian, F., Smith, E. L. and Carmody, R. J. (2016) The regulation of NF-${\kappa}B$ subunits by phosphorylation. Cells 5, E12. https://doi.org/10.3390/cells5010012
  5. Desvergne, B. and Wahli, W. (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr. Rev. 20, 649-688.
  6. Hayden, M. S. and Ghosh, S. (2004) Signaling to NF-${\kappa}B$. Genes Dev. 18, 2195-2224. https://doi.org/10.1101/gad.1228704
  7. Hays, T., Rusyn, I., Burns, A. M., Kennett, M. J., Ward, J. M., Gonzalez, F. J. and Peters, J. M. (2005) Role of peroxisome proliferator-activatedreceptor-${\alpha}$ $(PPAR{\alpha})$ in bezafibrate-induced hepatocarcinogenesisand cholestasis. Carcinogenesis 26, 219-227.
  8. He, G., Yu, G. Y., Temkin, V., Ogata, H., Kuntzen, C., Sakurai, T., Sieghart, W., Peck-Radosavljevic, M., Leffert, H. L. and Karin, M. (2010) Hepatocyte $IKK{\beta}/NF-{\kappa}B$ inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation. Cancer Cell 17, 286-297. https://doi.org/10.1016/j.ccr.2009.12.048
  9. Karin, M. and Ben-Neriah, Y. (2000) Phosphorylation meets ubiquitination:the control of NF-$[{\kappa}]B$ activity. Annu. Rev. Immunol. 18, 621-663. https://doi.org/10.1146/annurev.immunol.18.1.621
  10. Kersten, S., Seydoux, J., Peters, J. M., Gonzalez, F. J., Desvergne, B. and Wahli, W. (1999) Peroxisome proliferator-activated receptor ${\alpha}$ mediates the adaptive response to fasting. J. Clin. Invest. 103, 1489-1498. https://doi.org/10.1172/JCI6223
  11. Kim, J. H., Qu, A., Reddy, J. K., Gao, B. and Gonzalez, F. J. (2014) Hepatic oxidative stress activates the Gadd45b gene by way of degradation of the transcriptional repressor STAT3. Hepatology 59, 695-704. https://doi.org/10.1002/hep.26683
  12. Klaunig, J. E., Babich, M. A., Baetcke, K. P., Cook, J. C., Corton, J. C., David, R. M., DeLuca, J. G., Lai, D. Y., McKee, R. H., Peters, J. M., Roberts, R. A. and Fenner-Crisp, P. A. (2003) $PPAR{\alpha}$ agonist-induced rodent tumors: modes of action and human relevance. Crit. Rev. Toxicol. 33, 655-780. https://doi.org/10.1080/713608372
  13. Kundu, J. K. and Surh, Y. J. (2012) Emerging avenues linking inflammation and cancer. Free Radic. Biol. Med. 52, 2013-2037. https://doi.org/10.1016/j.freeradbiomed.2012.02.035
  14. Lee, H., Herrmann, A., Deng, J. H., Kujawski, M., Niu, G., Li, Z., Forman, S., Jove, R., Pardoll, D. M. and Yu, H. (2009) Persistently activated Stat3 maintains constitutive NF-${\kappa}B$ activity in tumors. Cancer Cell 15, 283-293. https://doi.org/10.1016/j.ccr.2009.02.015
  15. Li, Q., Van Antwerp, D., Mercurio, F., Lee, K. F. and Verma, I. M. (1999a) Severe liver degeneration in mice lacking the $I{\kappa}B$ kinase 2 gene. Science 284, 321-325. https://doi.org/10.1126/science.284.5412.321
  16. Li, Z. W., Chu, W., Hu, Y., Delhase, M., Deerinck, T., Ellisman, M., Johnson, R. and Karin, M. (1999b) The $IKK{\beta}$ subunit of $I{\kappa}B$ kinase (IKK) is essential for nuclear factor ${\kappa}B$ activation and prevention of apoptosis. J. Exp. Med. 189, 1839-1845. https://doi.org/10.1084/jem.189.11.1839
  17. Liu, F., Xia, Y., Parker, A. S. and Verma, I. M. (2012) IKK biology. Immunol. Rev. 246, 239-253. https://doi.org/10.1111/j.1600-065X.2012.01107.x
  18. Luedde, T., Assmus, U., Wustefeld, T., Meyer zu Vilsendorf, A., Roskams, T., Schmidt-Supprian, M., Rajewsky, K., Brenner, D. A., Manns, M. P., Pasparakis, M. and Trautwein, C. (2005) Deletion of IKK2 in hepatocytes does not sensitize these cells to TNF-induced apoptosis but protects from ischemia/reperfusion injury. J. Clin. Invest. 115, 849-859. https://doi.org/10.1172/JCI23493
  19. Maeda, S., Chang, L., Li, Z. W., Luo, J. L., Leffert, H. and Karin, M. (2003) $IKK{\beta}$ is required for prevention of apoptosis mediated by cell-bound but not by circulating $TNF{\alpha}$. Immunity 19, 725-737. https://doi.org/10.1016/S1074-7613(03)00301-7
  20. Patel, S. A., Bhambra, U., Charalambous, M. P., David, R. M., Edwards, R. J., Lightfoot, T., Boobis, A. R. and Gooderham, N. J. (2014) Interleukin-6 mediated upregulation of CYP1B1 and CYP2E1 in colorectal cancer involves DNA methylation, miR27b and STAT3. Br. J. Cancer 111, 2287-2296. https://doi.org/10.1038/bjc.2014.540
  21. Peters, J. M., Cattley, R. C. and Gonzalez, F. J. (1997) Role of $PPAR{\alpha}$ in the mechanism of action of the nongenotoxic carcinogen and peroxisome proliferator Wy-14,643. Carcinogenesis 18, 2029-2033. https://doi.org/10.1093/carcin/18.11.2029
  22. Peters, J. M., Shah, Y. M. and Gonzalez, F. J. (2012) The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nat. Rev. Cancer 12, 181-195. https://doi.org/10.1038/nrc3214
  23. Pyper, S. R., Viswakarma, N., Yu, S. and Reddy, J. K. (2010) $PPAR{\alpha}$:energy combustion, hypolipidemia, inflammation and cancer. Nucl. Recept. Signal. 8, e002.
  24. Varanasi, U., Chu, R., Chu, S., Espinosa, R., LeBeau, M. M. and Reddy, J. K. (1994) Isolation of the human peroxisomal acyl-CoA oxidase gene: organization, promoter analysis, and chromosomal localization. Proc. Natl. Acad. Sci. U.S.A. 91, 3107-3111. https://doi.org/10.1073/pnas.91.8.3107
  25. Woods, C. G., Burns, A. M., Bradford, B. U., Ross, P. K., Kosyk, O., Swenberg, J. A., Cunningham, M. L. and Rusyn, I. (2007) WY-14,643 induced cell proliferation and oxidative stress in mouse liver are independent of NADPH oxidase. Toxicol. Sci. 98, 366-374. https://doi.org/10.1093/toxsci/kfm104
  26. Yakar, S., Liu, J. L., Stannard, B., Butler, A., Accili, D., Sauer, B. and LeRoith, D. (1999) Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc. Natl. Acad. Sci. U.S.A. 96, 7324-7329. https://doi.org/10.1073/pnas.96.13.7324
  27. Yan, J., Xiang, J., Lin, Y., Ma, J., Zhang, J., Zhang, H., Sun, J., Danial, N. N., Liu, J. and Lin, A. (2013) Inactivation of BAD by IKK inhibits $TNF{\alpha}$-induced apoptosis independently of NF-${\kappa}B$ activation. Cell 152, 304-315. https://doi.org/10.1016/j.cell.2012.12.021
  28. Yang, J., Liao, X., Agarwal, M. K., Barnes, L., Auron, P. E. and Stark, G. R. (2007) Unphosphorylated STAT3 accumulates in response to IL-6 and activates transcription by binding to NF${\kappa}B$. Genes Dev. 21, 1396-1408. https://doi.org/10.1101/gad.1553707

Cited by

  1. and Semilicoisoflavone B Reduce Aβ Secretion by Increasing PPARγ Expression and Inhibiting STAT3 Phosphorylation to Inhibit BACE1 Expression vol.62, pp.6, 2018, https://doi.org/10.1002/mnfr.201700633