Browse > Article
http://dx.doi.org/10.14348/molcells.2022.0067

SMAD4 Controls Cancer Cell Metabolism by Regulating Methylmalonic Aciduria Cobalamin Deficiency (cbl) B Type  

Song, Kyoung (College of Pharmacy, Duksung Women's University)
Lee, Hun Seok (Laboratory of Molecular Pathology and Cancer Genomics, Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University)
Jia, Lina (Department of Pharmacology, Shenyang Pharmaceutical University)
Chelakkot, Chaithanya (Bio-MAX Institute, Seoul National University)
Rajasekaran, Nirmal (Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University)
Shin, Young Kee (Laboratory of Molecular Pathology and Cancer Genomics, Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University)
Abstract
Suppressor of mothers against decapentaplegic homolog (SMAD) 4 is a pluripotent signaling mediator that regulates myriad cellular functions, including cell growth, cell division, angiogenesis, apoptosis, cell invasion, and metastasis, through transforming growth factor β (TGF-β)-dependent and -independent pathways. SMAD4 is a critical modulator in signal transduction and functions primarily as a transcription factor or cofactor. Apart from being a DNA-binding factor, the additional SMAD4 mechanisms in tumor suppression remain elusive. We previously identified methyl malonyl aciduria cobalamin deficiency B type (MMAB) as a critical SMAD4 binding protein using a proto array analysis. This study confirmed the interaction between SMAD4 and MMAB using bimolecular fluorescence complementation (BiFC) assay, proximity ligation assay (PLA), and conventional immunoprecipitation. We found that transient SMAD4 overexpression down-regulates MMAB expression via a proteasome-dependent pathway. SMAD4-MMAB interaction was independent of TGF-β signaling. Finally, we determined the effect of MMAB downregulation on cancer cells. siRNA-mediated knockdown of MMAB affected cancer cell metabolism in HeLa cells by decreasing ATP production and glucose consumption as well as inducing apoptosis. These findings suggest that SMAD4 controls cancer cell metabolism by regulating MMAB.
Keywords
methyl malonyl aciduria cobalamin deficiency B type; mitochondrial energy production; proteasomal pathway; suppressor of mothers against decapentaplegic homolog 4;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Rosenberg, L.E., Lilljeqvist, A., and Hsia, Y.E. (1968b). Methylmalonic aciduria: metabolic block localization and vitamin B 12 dependency. Science 162, 805-807.   DOI
2 Itatani, Y., Kawada, K., and Sakai, Y. (2019). Transforming growth factor-beta signaling pathway in colorectal cancer and its tumor microenvironment. Int. J. Mol. Sci. 20, 5822.   DOI
3 Allen, E.L., Ulanet, D.B., Pirman, D., Mahoney, C.E., Coco, J., Si, Y., Chen, Y., Huang, L., Ren, J., Choe, S., et al. (2016). Differential aspartate usage identifies a subset of cancer cells particularly dependent on OGDH. Cell Rep. 17, 876-890.   DOI
4 Chan, R., Mascarenhas, L., Boles, R.G., Kerkar, N., Genyk, Y., and Venkatramani, R. (2015). Hepatoblastoma in a patient with methylmalonic aciduria. Am. J. Med. Genet. A 167A, 635-638.
5 Anderson, N.M., Mucka, P., Kern, J.G., and Feng, H. (2018). The emerging role and targetability of the TCA cycle in cancer metabolism. Protein Cell 9, 216-237.   DOI
6 Anzmann, A.F., Pinto, S., Busa, V., Carlson, J., McRitchie, S., Sumner, S., Pandey, A., and Vernon, H.J. (2019). Multi-omics studies in cellular models of methylmalonic acidemia and propionic acidemia reveal dysregulation of serine metabolism. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 165538.   DOI
7 Allendorph, G.P., Vale, W.W., and Choe, S. (2006). Structure of the ternary signaling complex of a TGF-beta superfamily member. Proc. Natl. Acad. Sci. U. S. A. 103, 7643-7648.   DOI
8 Bardeesy, N., Cheng, K.H., Berger, J.H., Chu, G.C., Pahler, J., Olson, P., Hezel, A.F., Horner, J., Lauwers, G.Y., Hanahan, D., et al. (2006). Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev. 20, 3130-3146.   DOI
9 Biondi, C.A., Das, D., Howell, M., Islam, A., Bikoff, E.K., Hill, C.S., and Robertson, E.J. (2007). Mice develop normally in the absence of Smad4 nucleocytoplasmic shuttling. Biochem. J. 404, 235-245.   DOI
10 Kishton, R.J. and Rathmell, J.C. (2015). Novel therapeutic targets of tumor metabolism. Cancer J. 21, 62-69.   DOI
11 Lee, S.U., Kim, M.O., Kang, M.J., Oh, E.S., Ro, H., Lee, R.W., Song, Y.N., Jung, S., Lee, J.W., Lee, S.Y., et al. (2021). Transforming growth factor-b inhibits MUC5AC expression by SMAD3/HDAC2 complex formation and NF-kB deacetylation at K310 in NCI-H292 cells. Mol. Cells 44, 38-49.   DOI
12 Pavlova, N.N. and Thompson, C.B. (2016). The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27-47.   DOI
13 Phillips, D., Aponte, A.M., French, S.A., Chess, D.J., and Balaban, R.S. (2009). Succinyl-CoA synthetase is a phosphate target for the activation of mitochondrial metabolism. Biochemistry 48, 7140-7149.   DOI
14 Rajasekaran, N., Song, K., Lee, J.H., Wei, Y., Erkin, O.C., Lee, H., and Shin, Y.K. (2021). Nuclear respiratory factor-1, a novel SMAD4 binding protein, represses TGF-beta/SMAD4 signaling by functioning as a transcriptional cofactor. Int. J. Mol. Sci. 22, 5595.   DOI
15 Lycan, T.W., Pardee, T.S., Petty, W.J., Bonomi, M., Alistar, A., Lamar, Z.S., Isom, S., Chan, M.D., Miller, A.A., and Ruiz, J. (2016). A phase II clinical trial of CPI-613 in patients with relapsed or refractory small cell lung carcinoma. PLoS One 11, e0164244.   DOI
16 Dang, L., White, D.W., Gross, S., Bennett, B.D., Bittinger, M.A., Driggers, E.M., Fantin, V.R., Jang, H.G., Jin, S., Keenan, M.C., et al. (2009). Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739-744.   DOI
17 Bartsch, D., Hahn, S.A., Danichevski, K.D., Ramaswamy, A., Bastian, D., Galehdari, H., Barth, P., Schmiegel, W., Simon, B., and Rothmund, M. (1999). Mutations of the DPC4/Smad4 gene in neuroendocrine pancreatic tumors. Oncogene 18, 2367-2371.   DOI
18 Batlle, E. and Massague, J. (2019). Transforming growth factor-beta signaling in immunity and cancer. Immunity 50, 924-940.   DOI
19 Blackford, A., Serrano, O.K., Wolfgang, C.L., Parmigiani, G., Jones, S., Zhang, X., Parsons, D.W., Lin, J.C., Leary, R.J., Eshleman, J.R., et al. (2009). SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clin. Cancer Res. 15, 4674-4679.   DOI
20 David, C.J. and Massague, J. (2018). Contextual determinants of TGFbeta action in development, immunity and cancer. Nat. Rev. Mol. Cell Biol. 19, 419-435.   DOI
21 Dobson, C.M., Wai, T., Leclerc, D., Kadir, H., Narang, M., Lerner-Ellis, J.P., Hudson, T.J., Rosenblatt, D.S., and Gravel, R.A. (2002). Identification of the gene responsible for the cblB complementation group of vitamin B12-dependent methylmalonic aciduria. Hum. Mol. Genet. 11, 3361-3369.   DOI
22 Rush, E.C., Katre, P., and Yajnik, C.S. (2014). Vitamin B12: one carbon metabolism, fetal growth and programming for chronic disease. Eur. J. Clin. Nutr. 68, 2-7.   DOI
23 Massague, J. and Wotton, D. (2000). Transcriptional control by the TGF-beta/Smad signaling system. EMBO J. 19, 1745-1754.   DOI
24 Papageorgis, P., Cheng, K., Ozturk, S., Gong, Y., Lambert, A.W., Abdolmaleky, H.M., Zhou, J.R., and Thiagalingam, S. (2011). Smad4 inactivation promotes malignancy and drug resistance of colon cancer. Cancer Res. 71, 998-1008.
25 Rosenberg, L.E., Lilljeqvist, A.C., and Hsia, Y.E. (1968a). Methylmalonic aciduria. An inborn error leading to metabolic acidosis, long-chain ketonuria and intermittent hyperglycinemia. N. Engl. J. Med. 278, 1319-1322.   DOI
26 Schutte, M. (1999). DPC4/SMAD4 gene alterations in human cancer, and their functional implications. Ann. Oncol. 10 Suppl 4, 56-59.   DOI
27 Wan, R., Feng, J., and Tang, L. (2021). Consequences of mutations and abnormal expression of SMAD4 in tumors and T cells. Onco Targets Ther. 14, 2531-2540.   DOI
28 Wilentz, R.E., Iacobuzio-Donahue, C.A., Argani, P., McCarthy, D.M., Parsons, J.L., Yeo, C.J., Kern, S.E., and Hruban, R.H. (2000). Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Res. 60, 2002-2006.
29 Williamson, J.R. and Cooper, R.H. (1980). Regulation of the citric acid cycle in mammalian systems. FEBS Lett. 117 Suppl, K73-K85.   DOI
30 Fehling, C., Nilsson, B., and Jagerstad, M. (1979). Effect of vitamin B12 deficiency on energy-rich phosphates, glycolytic and citric acid cycle metabolites and associated amino acids in rat cerebral cortex. J. Neurochem. 32, 1115-1117.   DOI
31 Froese, D.S. and Gravel, R.A. (2010). Genetic disorders of vitamin B(1)(2) metabolism: eight complementation groups--eight genes. Expert Rev. Mol. Med. 12, e37.   DOI
32 Haiman, C.A., Han, Y., Feng, Y., Xia, L., Hsu, C., Sheng, X., Pooler, L.C., Patel, Y., Kolonel, L.N., Carter, E., et al. (2013). Genome-wide testing of putative functional exonic variants in relationship with breast and prostate cancer risk in a multiethnic population. PLoS Genet. 9, e1003419.   DOI
33 Zachar, Z., Marecek, J., Maturo, C., Gupta, S., Stuart, S.D., Howell, K., Schauble, A., Lem, J., Piramzadian, A., Karnik, S., et al. (2011). Non-redox-active lipoate derivatives disrupt cancer cell mitochondrial metabolism and are potent anticancer agents in-vivo. J. Mol. Med. (Berl.) 89, 1137-1148.   DOI
34 Tsujimoto, Y. (1997). Apoptosis and necrosis: intracellular ATP level as a determinant for cell death modes. Cell Death Differ. 4, 429-434.   DOI
35 Inigo, M., Deja, S., and Burgess, S.C. (2021). Ins and outs of the TCA cycle: the central role of anaplerosis. Annu. Rev. Nutr. 41, 19-47.   DOI
36 Johnson, K., Kirkpatrick, H., Comer, A., Hoffmann, F.M., and Laughon, A. (1999). Interaction of Smad complexes with tripartite DNA-binding sites. J. Biol. Chem. 274, 20709-20716.   DOI
37 Cen, H., Mao, F., Aronchik, I., Fuentes, R.J., and Firestone, G.L. (2008). DEVD-NucView488: a novel class of enzyme substrates for real-time detection of caspase-3 activity in live cells. FASEB J. 22, 2243-2252.   DOI
38 Yan, P., Klingbiel, D., Saridaki, Z., Ceppa, P., Curto, M., McKee, T.A., Roth, A., Tejpar, S., Delorenzi, M., Bosman, F.T., et al. (2016). Reduced expression of SMAD4 is associated with poor survival in colon cancer. Clin. Cancer Res. 22, 3037-3047.   DOI
39 Yen, K., Travins, J., Wang, F., David, M.D., Artin, E., Straley, K., Padyana, A., Gross, S., DeLaBarre, B., Tobin, E., et al. (2017). AG-221, a first-in-class therapy targeting acute myeloid leukemia harboring oncogenic IDH2 mutation. Cancer Discov. 7, 478-493.   DOI
40 Yuneva, M.O., Fan, T.W., Allen, T.D., Higashi, R.M., Ferraris, D.V., Tsukamoto, T., Mates, J.M., Alonso, F.J., Wang, C., Seo, Y., et al. (2012). The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 15, 157-170.   DOI
41 Zamaraeva, M.V., Sabirov, R.Z., Maeno, E., Ando-Akatsuka, Y., Bessonova, S.V., and Okada, Y. (2005). Cells die with increased cytosolic ATP during apoptosis: a bioluminescence study with intracellular luciferase. Cell Death Differ. 12, 1390-1397.   DOI
42 Zhang, J., Dobson, C.M., Wu, X., Lerner-Ellis, J., Rosenblatt, D.S., and Gravel, R.A. (2006). Impact of cblB mutations on the function of ATP:cob(I)alamin adenosyltransferase in disorders of vitamin B12 metabolism. Mol. Genet. Metab. 87, 315-322.   DOI
43 McCarthy, A.J. and Chetty, R. (2018). Smad4/DPC4. J. Clin. Pathol. 71, 661-664.   DOI
44 Depeint, F., Bruce, W.R., Shangari, N., Mehta, R., and O'Brien, P.J. (2006). Mitochondrial function and toxicity: role of B vitamins on the one-carbon transfer pathways. Chem. Biol. Interact. 163, 113-132.   DOI
45 Pardee, T.S., Lee, K., Luddy, J., Maturo, C., Rodriguez, R., Isom, S., Miller, L.D., Stadelman, K.M., Levitan, D., Hurd, D., et al. (2014). A phase I study of the first-in-class antimitochondrial metabolism agent, CPI-613, in patients with advanced hematologic malignancies. Clin. Cancer Res. 20, 5255-5264.   DOI
46 Sorin, M., Watkins, D., Gilfix, B.M., and Rosenblatt, D.S. (2021). Methionine dependence in tumor cells: the potential role of cobalamin and MMACHC. Mol. Genet. Metab. 132, 155-161.   DOI
47 Zawel, L., Dai, J.L., Buckhaults, P., Zhou, S., Kinzler, K.W., Vogelstein, B., and Kern, S.E. (1998). Human Smad3 and Smad4 are sequence-specific transcription activators. Mol. Cell 1, 611-617.   DOI
48 Gomes, A.P., Ilter, D., Low, V., Drapela, S., Schild, T., Mullarky, E., Han, J., Elia, I., Broekaert, D., Rosenzweig, A., et al. (2022). Altered propionate metabolism contributes to tumour progression and aggressiveness. Nat. Metab. 4, 435-443.   DOI
49 Grassian, A.R., Parker, S.J., Davidson, S.M., Divakaruni, A.S., Green, C.R., Zhang, X., Slocum, K.L., Pu, M., Lin, F., Vickers, C., et al. (2014). IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism. Cancer Res. 74, 3317-3331.
50 Ferrari, D., Stepczynska, A., Los, M., Wesselborg, S., and Schulze-Osthoff, K. (1998). Differential regulation and ATP requirement for caspase-8 and caspase-3 activation during CD95- and anticancer drug-induced apoptosis. J. Exp. Med. 188, 979-984.   DOI
51 Pathania, D., Millard, M., and Neamati, N. (2009). Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism. Adv. Drug Deliv. Rev. 61, 1250-1275.   DOI
52 Lee, N. and Kim, D. (2016). Cancer metabolism: fueling more than just growth. Mol. Cells 39, 847-854.   DOI
53 Massague, J. (1998). TGF-beta signal transduction. Annu. Rev. Biochem. 67, 753-791.   DOI
54 Miyaki, M. and Kuroki, T. (2003). Role of Smad4 (DPC4) inactivation in human cancer. Biochem. Biophys. Res. Commun. 306, 799-804.   DOI
55 Plessl, T., Burer, C., Lutz, S., Yue, W.W., Baumgartner, M.R., and Froese, D.S. (2017). Protein destabilization and loss of protein-protein interaction are fundamental mechanisms in cblA-type methylmalonic aciduria. Hum. Mutat. 38, 988-1001.   DOI