
INTRODUCTION

Signal transducer and activator of transcription 3 

(STAT3) is one of seven STAT proteins that was first iden-

tified as an interleukin-6 (IL-6) dependent transcription 

factor inducing acute phase gene expression (Zhong et 

al., 1994). It was cloned and initially named as acute-

phase response factor (APRF) (Akira et al., 1994). STAT3 

has an N-terminus domain, a coiled-coil domain, a DNA 

binding domain, a linker domain, an src homology 2 (SH2) 

domain, and a transactivation domain that contains tyro-

sine (Y705) and serine phosphorylation (S727) sites (Ihle, 

1996). STAT3 are first tyrosine phosphorylated by recep-

tor-associated Janus kinases (Jak), forms active dimers by 

Y705 binding to SH2 domain, and translocate to nucleus 

acting as a transcription factor to transcribe mitochon-

drial and metabolic genes as shown in Fig. 1 (Darnell et 

al., 1994; Schindler and Darnell 1995; Ihle, 1996; Levy and 

Lee 2002). In addition, STAT3 can be regulated by vari-

ous post-translational modifications such as methylation, 

acetylation, and oxidation (Avalle and Poli 2018; Chun et 

al., 2020). Ablation of STAT3 results in embryonic lethal-

ity (Takeda et al., 1997) and expression of a constitutively 

active form of STAT3 (STAT3C) induces tumor formation 

(Bromberg et al., 1999). Disruption of Jak-STAT pathway 

shows its requirement in various tissues including female 

gametogenesis, embryogenesis, CNTF mediate neuropro-

tection in retinal degeneration, altered metabolism in an 

animal model of diabetes, and obesity (Levy and Lee 2002; 

Matthews and Febbraio 2008; Rhee et al., 2013; Sobinoff 

et al., 2013; Chowdhury et al., 2014; Gurzov et al., 2016). 

Thus, understanding the role of the Jak-STAT pathway in 

the regulation of mitochondria morphology and function 

may be crucial for finding treatments for infertility, neu-

rodegenerative diseases, diabetes, obesity, and cancer. 

This review focuses on both the canonical and nonca-

nonical role of the Jak-STAT pathway in mitochondrial 

morphology and metabolism. 
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ABSTRACT    Jak-STAT pathway is required for embryogenesis, female gametogenesis, 
cytokine-mediated neuroprotection, diabetes, obesity, cancer, stem cell, and various 
tissues. The noncanonical role of Jak-STAT in mitochondria function was supported by 
the detection of STAT protein in mitochondria, however, several studies show that STAT 
protein is detected in the endoplasmic reticulum (ER), and not in mitochondria. STAT 
protein may alter mitochondria function without entering mitochondria, this involves 
regulation of fission and fusion proteins to change mitochondria morphology. However, 
how changes in mitochondria morphology lead to changes in mitochondria metabolism 
needs further investigation.
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NONCANONICAL ROLE OF JAK-STAT 
PATHWAY

In addition to the canonical role of STAT3 as a tran-

scription factor, several studies report noncanonical 

localization and function in the mitochondria as shown 

in Fig. 1 (Gough et al., 2009; Wegrzyn et al., 2009; Szcz-

epanek et al., 2011; Zhang et al., 2013; Macias et al., 

2014; Luo et al., 2016; Avalle and Poli 2018; Chun et al., 

2020; Mohammed et al., 2020). These studies show that 

S727 phosphorylated STAT3 is detected in mitochondria 

by fractionation, confocal imaging, EM imaging, and pro-

tection from proteinase K. Deletion of STAT3 results in a 

decrease of electron transport chain (ETC) complex activ-

ities and glycolytic activity in ras transformed cells (Gough 

et al., 2009; Wegrzyn et al., 2009). Immunoprecipitation 

of mitochondrial extracts shows that complex I interact 

directly with mitochondrial STAT3 (mitoSTAT3) (Wegrzyn 

et al., 2009). Alternatively, mitoSTAT3 can bind directly to 

mitochondria DNA (Harbauer et al., 2014). ChIP assay us-

ing STAT3 antibody shows that STAT3 binds directly with 

mitochondrial DNA (Vassilev et al., 2002; Macias et al., 

2014). DNaseI footprinting/protection assay shows the 

identification of STAT3 consensus recognition sequences 

in the human mitochondrial transcriptome (Mercer et al., 

2011). In addition, other members of the STAT family also 

show mitochondria localization (Meier and Larner, 2014). 

Both immunofluorescence and immunogold electron mi-

croscopy show that STAT6-GFP is also detected in mito-

chondria (Khan et al., 2013).

Despite studies showing mitochondrial localization, sev-

eral studies argue against mitochondria localization. First, 

STAT3 lacks mitochondria localization signal (Harbauer et 

al., 2014; Wiedemann and Pfanner 2017; Su et al., 2020). 

Second, even STAT3 enters mitochondria, the stoichi-

ometry of STAT3 to mitochondrial protein nor genome 

is different for direct interaction to occur (Phillips et al., 

2010). Third, recent studies show that STAT3 may not 

be found in mitochondria (Avalle et al., 2019; Su et al., 

2020). Sucrose gradient centrifugation shows that STAT3 

is only detected in mitochondria-ER and not in the pure 

mitochondrial fraction (Su et al., 2020). Thus, the local-

ization of STAT3 protein in the mitochondria needs to be 

reexamined using higher resolution immunofluorescence 

microscopy and a better fractionation technique.

REGULATION OF MITOCHONDRIAL 
MORPHOLOGY AND METABOLISM

If STAT protein does not enter mitochondria, how can 

the Jak-STAT pathway regulate mitochondria metabo-

lism? Studies show that the Jak-STAT pathway may regu-

late mitochondria metabolism via STAT3’s canonical role 

as transcribing mitochondrial genes in the nucleus or 

act as a regulator of fission or fusion proteins to change 

mitochondrial morphology that alters cell metabolism 

as shown in Fig. 2. One of the phenotypes of STAT2 or 

STAT3 knockdown/knockout mice is the elongation of 

mitochondria (Shahni et al., 2015; Su et al., 2020). In can-

cer cells, proliferating cells show fragmented mitochon-

dria morphology that exhibits the Warburg effect and the 

cells have diminished oxidative metabolism but increased 

glycolytic metabolism (Vander Heiden et al., 2009; Rafals-

ki et al., 2012; Maycotte et al., 2017; Vaupel and Multhoff, 

2021). The fragmented mitochondria morphology is not 

only limited to cancer, but also in proliferating stem cells. 

Embryonic stems cells (ESCs) maintain stemness and have 

fragmented mitochondrial morphology but change to 

elongated mitochondria morphology when it loses plu-

ripotency during differentiation (Cho et al., 2006; Chung 

et al., 2007; Lee et al., 2020). Similar to cancer cells, the 

embryonic stem cells (ESCs) exhibit glycolytic metabolism 

but switch to oxidative metabolism upon differentiation 

(Chung et al., 2007; Kondoh et al., 2007). In addition, 

reprogrammed induces pluripotent stem (iPS) cells also 
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Fig. 1. Canonical and noncanonical Jak-STAT pathways.
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switch from oxidative to glycolytic metabolism accompa-

nied by mitochondrial fragmentation (Choi et al., 2015; 

Prieto et al., 2016).

How the Jak-STAT pathway regulates mitochondrial 

morphology is not clear. When mitochondria elongate 

upon withdrawal of leukemia inhibitory factor (LIF), 

dynamin-related protein 1 (DRP1) is decreased and fusion 

protein mitofusin 2 (MFN2) is increased, however other 

fusion/fission proteins mitofusin 1 (MFN1), optic atrophy 

protein 1 (OPA1), and mitochondrial fission 1 protein 

(FIS1) did not change (Lee et al., 2020). Knockdown of LIF 

receptor gp130 using RNA interference shows suppres-

sion of LIF induced DRP1 and FIS1, however, LIF induced 

DRP1 and FIS1 induction was inhibited by ERK1/2 in-

hibitor, but not by STAT3 small molecule inhibitor C188-

9 (Cho et al., 2006; Prieto et al., 2016; Fix et al., 2019). 

Cytokines can activate other pathways such as ERK and 

AKT via crosstalk (Boulton et al., 1994; Dolcet et al., 2001; 

Ernst and Jenkins, 2004), thus it is possible that LIF medi-

ated ERK pathway may contribute to fission, and the use 

of small-molecule inhibitors may have not fully perturbed 

Jak-STAT pathway. Whole exome sequencing in a human 

patient with mitochondrial fission disorder revealed ho-

mozygous STAT2 mutation that is unable to phosphory-

late DRP1 emphasizing the importance of the Jak-STAT 

pathway in mitochondrial fission (Shahni et al., 2015). 

However other studies show that STAT3 interacts directly 

with OPA1 in mitochondria using STAT3 small molecule 

inhibitor Sttatic (Zhang et al., 2020; Brillo et al., 2021) or 

binds to OPA1 promoter to induce fusion rather than fis-

sion using shRNA STAT3 knockdown and ChIP assay (Nan 

et al., 2017) contradicting the role of Jak-STAT pathway in 

maintaining mitochondria fragmentation. Contradicting 

studies suggest that the role of the Jak-STAT pathway may 

change depending on the tissue and microenvironment, 

however, these studies show the importance of the Jak-

STAT pathway in mitochondrial dynamics.

FUTURE PERSPECTIVE

The noncanonical role of STAT protein in mitochon-

dria is still controversial. Super-resolution imaging using 

3D structure illumination microscopy (SIM) may help to 

detect STAT protein in the mitochondria. Whether the 

Jak-STAT pathway induces fission via DRP1 or fusion 

via OPA1 is also controversial. The role of the Jak-STAT 

pathway may change depending on the tissue specificity 

and microenvironment. Studies show a link between mi-

tochondrial morphology and metabolism, however, how 

changes in mitochondrial morphology regulate glycolytic 

and oxidative metabolism needs to be examined. Under-

standing the role of the Jak-STAT pathway in the regula-

tion of mitochondria morphology and function may be 

crucial to finding treatments and diagnostics for various 

diseases.
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