• Title/Summary/Keyword: Camphor

Search Result 118, Processing Time 0.021 seconds

Catalyst-Free and Large-Area Deposition of Graphitic Carbon Films on Glass Substrates by Pyrolysis of Camphor

  • Nam, Hyobin;Lee, Woong
    • Korean Journal of Materials Research
    • /
    • v.25 no.7
    • /
    • pp.341-346
    • /
    • 2015
  • The feasibility of obtaining graphitic carbon films on targeted substrates without a catalyst and transfer step was explored through the pyrolysis of the botanical derivative camphor. In a horizontal quartz tube, camphor was subjected to a sequential process of evaporation and thermal decomposition; then, the decomposed product was deposited on a glass substrate. Analysis of the Raman spectra suggest that the deposited film is related to unintentionally doped graphitic carbon containing some $sp-sp^2$ linear carbon chains. The films were transparent in the visible range and electrically conductive, with a sheet resistance comparable to that of graphene. It was also demonstrated that graphitic films with similar properties can be reproduciblyobtained, while property control was readily achieved by varying the process temperature.

Comparison of Enantioselective CEC Separation of OT-MIP Capillary Columns with Templates of Various Camphor Derivatives Made by the Pre-established General Preparation Protocol

  • Zaidi, Shabi Abbas;Lee, Seung-Mi;Lee, Ju-Young;Cheong, Won-Jo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2934-2938
    • /
    • 2010
  • Some open tubular (OT) molecule imprinted polymer (MIP) silica capillary columns with templates of camphor derivatives such as 10-camphorsulfonic acid (10-CSA), 10-camphorsulfonamide (10-CS) and camphor-p-tosyl hydrazone (CTH) have been successfully prepared by the prior generalized preparation protocol. The three MIP thin layers of different templates showed quite different morphologies. The chiral selectivity of each MIP column for the template enantiomers was optimized by changing eluent composition and pH. The optimization conditions were found to be different for the three MIPs. This work suggests prospective successful extension of the generalized preparation protocol for OT-MIP silica capillary columns toward templates of a variety of chemical groups.

Biodegradation of Aromatic Compounds by Strains of Pseudomonas (Pseudomonas속 세균에 의한 방향족화합물 생분해)

  • 정윤창;김경남;최용진;양한철;송준상;서윤수
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.2
    • /
    • pp.100-108
    • /
    • 1989
  • Thirty-six aromatic compound biodegraders; 10 strains for benzoate, 10 for salicylate, 6 for m-toluate, and 10 for DL-camphor were isolated and taxonomically characterized. A mutant Pseudomonas strain, Ben 6-2, derived from Ben 6 revealed remarkably improved ability to metabolize benzoate. Thus enhancement of the average substrate removal rate from 5.2 to 11.0mg/$\ell$/ hr was attained by the mutant. Both of strains Sal 7 and Tol 2, degraders of salicylate and m-toluate respectively, were classified as Pseudomonas sup. Both strains were found to be extremely effective in metabolizing each aromatic substrates. The average substrate degradation rates in minimal salt media containing 2,200mg/$\ell$ of the substrate were calculated to be 40.1 mg/$\ell$/ hr for strain Sal 7 and 33.0mg/$\ell$/ hr for Tol 2. Cam 10, a camphor degrading strain was demonstrated to be capable of mineralizing benzoate, phenol, toluene, octane, cyclohexane and xylene as well as camphor. Strain 1040 isolated from Cam 10 after repented adaptation to 1,000 mg/$\ell$ m-toluate gained the ability to utilize toluate as a sole carbon source. The mutant Brew actively at the expense of a mixture of car-bon sources; camphor, m-toluate, benzoate and phenol (each: 200 mg/$\ell$) and utilized the substances in the preferential order of camphor, phenol, benzoate, and m-toluate. Among the biodegraders examined Cam 1040 and Tol 2 were detected to harbor plasmid. The plasmid from Cam 1001 was determined to be about 98kb, and evidenced to encode the enzyme(s) for the degradation of camphor. For the further diversification of the metabolic potentials of Cam 1040, the NAH 2 plasmid of Pseudomonas putida NCIB 9816 was transferred to Cam 1040 by conjugation. The exconjugant obtained, Cam 1043, proved to gain an additional ability to metabolize salicylate and naphthalene.

  • PDF

The Characteristics of Cinnamomum japonicum Community in Japan's Special Natural Monument Area (일본 특별천연기념물 녹나무군락의 특성 분석)

  • Shim, Hang-Yong;Park, Seok-Gon;Choi, Song-Hyun;Lee, Sang-Cheol;Yu, Chan-Yeol;Sung, Chan-Yong
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.1
    • /
    • pp.52-63
    • /
    • 2019
  • This study analyzed the characteristics of vegetation structure of the camphor tree (Cinnamomum japonicum) community in the area of mount Tachibana, Kasuya county, Fukuoka Prefecture designated as a special natural monument in Japan. The survey showed overwhelming dominance of canopy tree in the canopy layer (about 30 m in tree heights and 92.79 cm in average breast height diameter) but no appearance in the understory layer or the shrub layer. In the understory layer and the shrub layer, Castanopsis sieboldii, Machilus thunbergii, Neolitsea sericea, and Cinnamomum yabunikkei, which were the competing species to the canopy layer and the late-successional species in the warm temperate climate zone, were mainly distributed. Moreover, the species diversity was generally low, indicating the vegetation characteristics that was not typical of evergreen broad-leaved forests. This is presumably because camphor trees were actively planted, protected, and cultivated to produce camphor which was valuable in the past. Although this site has not been artificially managed for the past 90 years as the raw materials of camphor have not been collected, vegetation transition did not proceed, which is unique. It is probably due to the fact that camphor was overwhelmingly dominant in the canopy layer so that the inflows of species were restricted, and young tree germination did not occur due to the allelopathy effects of camphor trees.

Screening of Plant Extracts and Identification of their Insecticidal Metabolites against Myzus persicae (복숭아혹진딧물 방제용 식물추출물 탐색 및 살충성분 구명)

  • Yang, Si young;Lim, Da jung;Kim, Yeo Hee;Kim, In Seon
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.2
    • /
    • pp.125-134
    • /
    • 2018
  • BACKGROUND: Green peach aphid (Myzus persicae) is an insect pest that significantly affects crop production. A number of pesticides have been used for aphid control, but their concerns on insect resistance and food safety have required alternative methods for pest management. In an effort to find for an alternative approach to aphid control, we screened plants extracts and examined their potentiality as insecticidal bio-resources. METHODS AND RESULTS: Two hundred and ninety eight plant extracts were examined for insecticidal activity against the aphid, and the best candidate among them was chosen for further study. The extracts from Cinnamomum camphora was determined to be the best candidate exhibiting insecticidal activity more than 60% at a level of $1,000{\mu}g/mL$. GC/MS analyses detected camphor, borneol, 4-terpineol, ${\alpha}$-terpineol and caryophyllene oxide as major compositions from the extracts obtained by hydrodistillation. Caryophyllene oxide exhibited the highest insecticidal activity with a $LC_{50}$ value of $237{\mu}g/mL$. Camphor lowered significantly the $LC_{50}$ value of caryophyllene oxide and increased largely its concentration in aphid, suggesting that camphor played a role in enhancing the insecticidal activity of caryophyllene oxide. CONCLUSION: This study suggested that camphor and caryophyllene oxide may be used as an insecticidal bio-resource for insect control against green peach aphid.

Identification of the Component with Anti-acetylcholinesterase Activity from the Essential Oil of Artemisia iwayomogi (더위지기 정유로부터 아세틸콜린에스테라제 억제활성 성분의 동정)

  • Choi, Jae Sue;Song, Byong-Min;Park, Hee-Juhn
    • Korean Journal of Plant Resources
    • /
    • v.30 no.1
    • /
    • pp.17-21
    • /
    • 2017
  • Since the acetylcholinesterase (AChE) inhibitor is used to treat Alzheimer's disease, the present study aimed to analyze the component with anti-AChE activity from the essential oil of Artemisia iwayomogi (Compositae). The four major components of the essential oil were identified to be camphor (29.8%), borneol (28.0%), eucalyptol (5.81%) and coumarin (5.49%) from a gas chromatography-mass spectrometry (GC-MS). The essential oil and its three components, camphor, borneol, and coumarin, were subjected to anti-AChE assay. The $IC_{50}$ values of the essential oil and coumarin were shown to be $0.298mg/m{\ell}$ and $0.236mg/m{\ell}$, though those of other two components, camphor and borneol, were more than $0.250mg/m{\ell}$. These results suggest that coumarin is an active substance of this essential oil with anti-AChE activity.

In Vitro Inhibitory Activities of Essential Oils from Rosmarinus officinalis L. Against Antibiotic-Susceptible and Resistant Strains of Some Pathogenic Bacteria (Rosmarinus officinalis 정유의 수종 항생제 감수성 및 내성 균주에 대한 억제효과)

  • Shin, Seung-Won
    • Korean Journal of Pharmacognosy
    • /
    • v.36 no.3 s.142
    • /
    • pp.252-256
    • /
    • 2005
  • The in visto inhibitory activities of essential oils of the Rosmarinus officinalis as well as its main constituents were evaluated against antibiotic-susceptible and -resistant strains of Staphylococcus aureus, streptococcus pneumoniae, Salmonella enteritidis and S. typhimurium. The essential oil fraction of R. officinalis and its main components, 1,8-cineole and camphor, exhibited significant inhibitory activities against most of the tested strains in this study, with MICs(minimum inhibitory concentrations) racing from 0.5mg/ml to 16mg/ml. The total oil fraction showed higher activity than its main components, 1,8-cineole and camphor against S. aureus strains. No remarkable differences were evident between MICs of the susceptible and resistant strains of S. aureus. Among the tested strains, S. pneumoniae CCARM 3523, the resistant strain to norfloxacin, oxacillin and erythromycin exhibited significantly lower sensitivity to the tested oils than antibiotic-susceptible strain. The oils revealed mostly higher inhibitory activity against S. typhimurium than against S. enteritidis.

Essential Oil Composition of Chrysanthemum boreale and Chrysanthemum indicum (산국과 감국의 정유성분 조성비교)

  • Hong, Chul-Un
    • Applied Biological Chemistry
    • /
    • v.45 no.2
    • /
    • pp.108-113
    • /
    • 2002
  • The compositions of essential oils isolated from the aerial parts of Chrysanthemum boreale and C. indicum by steam distillation were analyzed by GC and GC-MS. Ninty-four components were identified in the essential oil from C. boreale, with camphor (15.40% as GC peak area), cir-chrysanthenol (14.11%), ${\alpha}-thujone$ (13.27%), 1,8-cineole (4.16%), ${\alpha}-pinene$ (3.80%), ${\beta}-caryophyllene$ (3.58%), gremacrene D (2.69%), camphene (2.40%), umbellulone (2.24%) and ${\beta}-pinene$ (2.00%) as the major constituents. In the oil from C. indicum, the major constituents among 80 components identified were germacrene D (16.50%), camphor (10.04%), ${\alpha}-thujone$ (6.40%), ${\alpha}-pinene$ (4.50%), ${\alpha}-cadinol$ (3.97%), camphene (3.82%), ${\beta}-pinene$ (3.67%), zingiberene (3.64%), cis-chrysanthenol (3.45%), piperitone (3.09%), 1,8-cineole (2.61%) and chrysanthenone (2.42%). The oil from C. boreale, although similar to that from C. indicum in many respects, contained proportionately higher levels of camphor, cis-chrysanthenol, ${\alpha}-thujone$, 1,8-cineole and umbellulone, while that from C. indicum contained higher levels of germacrene D, ${\beta}-caryophyllene$, ${\alpha}-cadinol$, zingiberene, cis-chrysanthenol and piperitone.

Comparative Analysis of the Flavor Compounds in Cultivated Chrysanthemum indicum L. (국내 육성 감국의 품종별 향기성분 비교 분석)

  • Oh, Kyeong Yeol;Goo, Young Min;Jeong, Won Min;Sin, Seung Mi;Kil, Young Sook;Ko, Keon Hee;Yang, Ki Jeung;Kim, Jin-Hyo;Lee, Dong Yeol
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1523-1528
    • /
    • 2018
  • This study investigated the chemical composition of four Korean cultivated Chrysanthemum indicum L. (Gamguk 1 ho, Gamguk 2 ho, Gamguk 3 ho, and Wonhyang) which are used in the food and fragrance industries to identify their volatile flavor compounds. These compounds were analyzed using headspace GC-MS from plant samples cultivated in the same region of Korea (Sancheong-gun, Gyeongsangnam-do). A total of 23 compounds were identified, eight of which were common across the four cultivars. The major flavor components in the three Gamguk plants were identified as 3-carene, camphene, ${\beta}$-phellandrene, eucalyptol and (+)-camphor. Eleven compounds, including (+)-camphor at 31.40%, were identified in Gamguk 1 ho. Gamguk 2 ho was found to contain 12 flavor compounds, predominant of which was camphene at 25.60%. Thirteen compounds including (+)-camphor (26.88%) were identified in Gamguk 3 ho, while 17 were detected in the Wonhyang cultivar, including trans-piperitol (47.33%), sabinene, and ${\gamma}$-terpinyl acetate. These results indicate differences in the type and ratio of functional volatile flavor ingredients in Chrysanthemum indicum L. cultivars which is highly valuable as material for fragrance product development.