Browse > Article
http://dx.doi.org/10.3740/MRSK.2015.25.7.341

Catalyst-Free and Large-Area Deposition of Graphitic Carbon Films on Glass Substrates by Pyrolysis of Camphor  

Nam, Hyobin (School of Materials Science and Engineering, Changwon National University)
Lee, Woong (School of Materials Science and Engineering, Changwon National University)
Publication Information
Korean Journal of Materials Research / v.25, no.7, 2015 , pp. 341-346 More about this Journal
Abstract
The feasibility of obtaining graphitic carbon films on targeted substrates without a catalyst and transfer step was explored through the pyrolysis of the botanical derivative camphor. In a horizontal quartz tube, camphor was subjected to a sequential process of evaporation and thermal decomposition; then, the decomposed product was deposited on a glass substrate. Analysis of the Raman spectra suggest that the deposited film is related to unintentionally doped graphitic carbon containing some $sp-sp^2$ linear carbon chains. The films were transparent in the visible range and electrically conductive, with a sheet resistance comparable to that of graphene. It was also demonstrated that graphitic films with similar properties can be reproduciblyobtained, while property control was readily achieved by varying the process temperature.
Keywords
graphitic carbon; camphor; pyrolysis; transparent conductive film; Raman;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. S. Novoselov1, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 306(5696), 666 (2004).   DOI   ScienceOn
2 K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab and K. Kim, Nature, 490, 192 (2012).   DOI   ScienceOn
3 D. Li, M. B. Muller, S. Gilje, R. B. Kaner and G. G. Wallace, Nature Naotech., 3(2), 101 (2008).   DOI   ScienceOn
4 H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao and Y. Chen, ACS Nano, 2(3), 463 (2008).   DOI   ScienceOn
5 P. W. Sutter, J. -I. Flege and E. A. Sutter, Nature Mater., 7(5), 406 (2008).   DOI   ScienceOn
6 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi and B. H. Hong, Nature, 457(7230), 706 (2009).   DOI   ScienceOn
7 S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, b. Ozyilmaz, J. H. Ahn, B. H. Hong and S. Iijima, Nature Nanotech., 5(8), 574 (2010).   DOI
8 A. Dato, V. Radmilovic, Z. Lee, J. Phillips and M. Frenklach, Nano Lett., 8(7), 2012 (2008).   DOI   ScienceOn
9 F. Liu and Y. Zhang, Carbon, 48(9), 2394 (2010).   DOI   ScienceOn
10 G. Kalita, M. Matsushima, H. Uchida, K. Wakita and M. Umeno, J. Mater. Chem., 20(43), 9713 (2010).   DOI   ScienceOn
11 S. -K. Jerng, D. S. Yu, J. H. Lee, C. Kim, S. Yoon and S. -H. Chun, Nanoscale Res. Lett., 6(10), 565 (2011)   DOI   ScienceOn
12 A. C. Ferrari and J. Robertson, Phys. Rev. B, 64(9), 075414 (2001).   DOI   ScienceOn
13 A. Ferrari1 and D. M. Basko, Nature Nanotechnol., 8(4), 235 (2013).   DOI   ScienceOn
14 P. K. Chu and L. Li, Mater. Chem. Phys., 96(2-3), 253 (2006).   DOI   ScienceOn
15 Q. Wang, D. D. Allred and L. V. Knight, J. Raman Spectrosc., 26(12), 1039 (1995).   DOI   ScienceOn
16 Ramya, K. J. John and B. Manoj, Int. J. Electrochem. Sci., 8(7), 9421 (2013).
17 Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, C. K. Koo, Z. Shen and J. T. L. Thong, Small, 6(2), 195 (2010).   DOI   ScienceOn
18 B. P. Vinayan, N. I. Schwarzburgera and M. Fichtner, J. Mater. Chem. A, 3(13), 6810 (2015).   DOI   ScienceOn
19 C. Wang, Y. Zhou, L. He, T. -W. Ng, G. Hong, Q. -H. Wu, F. Gao, C. -S. Lee and W. Zhang, Nanoscale, 5(2), 600 (2013).   DOI
20 V. N. Popov and P. Lambin, Phys. Rev. B, 88(7), 075427 (2013).   DOI
21 J. Wang, S. Zhang, J. Zhou, R. Liu, R. Du, H. Xu, Z. Liu, J. Zhang and Z. Liu, Phys. Chem. Chem. Phys., 16(23), 11303 (2014).   DOI   ScienceOn
22 G. Jo, M. Choe, S. Lee, W. Park, Y. Ho. Kahng and T. Lee, Nanotechnol., 23(11), 112001 (2012).   DOI   ScienceOn