• 제목/요약/키워드: Calvaria of rats

검색결과 24건 처리시간 0.02초

치아회분말 및 치과용 연석고 혼합매식술에 관한 실험적 연구 (IMPLANTATION OF TOOTHASH COMBINED WITH PLASTER OF PARIS;EXPERIMENTAL STUDY)

  • 김영균;여환호;양인석;서재훈;조재오
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제16권2호
    • /
    • pp.122-129
    • /
    • 1994
  • This study was undertaken to determine whether the addition of calcium sulfate to toothash material (Toothash : plaster of paris=2 : 1) would improve its stabilizing property without adversely affecting its osteoconduction. The radiographic and histologic examinations of bone response of this composite material was performed after 1-, 3-, 5-, 8-, and 12-week implantation in calvaria of rats. No sign of extensive inflammatory response was detected. No movement could be observed with this composite material. Creeping substitution was observed in the surgical site. The direct union between toothash and growing bone after 12 weeks of implantation was observed in the defect margin. We could observe this composite implant material is resorbing slowly as time is over.

  • PDF

Effect of hydroxyapatite on critical-sized defect

  • Kim, Ryoe-Woon;Kim, Ji-Hyoung;Moon, Seong-Yong
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제38권
    • /
    • pp.26.1-26.6
    • /
    • 2016
  • Background: Xenologous or synthetic graft materials are commonly used as an alternative for autografts for guided bone regeneration. The purpose of this study was to evaluate effectiveness of carbonate apatite on the critical-size bone defect of rat's calvarium. Methods: Thirty-six critical-size defects were created on 18 adult male Sprague-Dawley rat calvaria under general anesthesia. Calvarial bones were grinded with 8 mm in daimeter bilaterally and then filled with (1) no grafts (control, n = 10 defects), (2) bovine bone mineral (Bio-$Oss^{(R)}$, Geistlich Pharma Ag. Swiss, n = 11 defects), and (3) hydroxyapatite ($Bongros^{(R)}$, Bio@ Inc., Seongnam, Korea, n = 15 defects). At 4 and 8 weeks after surgery, the rats were sacrificed and all samples were processed for histological and histomorphometric analysis. Results: At 4 weeks after surgery, group 3 ($42.90{\pm}9.33%$) showed a significant difference (p < 0.05) compared to the control ($30.50{\pm}6.05%$) and group 2 ($28.53{\pm}8.62%$). At 8 weeks after surgery, group 1 ($50.21{\pm}6.23%$), group 2 ($54.12{\pm}10.54%$), and group 3 ($50.92{\pm}6.05%$) showed no significant difference in the new bone formation. Conclusions: $Bongros^{(R)}$-HA was thought to be the available material for regenerating the new bone formation.

백서에서 인간 탈회동결건조골 수화시간에 따른 초기 골치유 (EFFECT OF HYDRATION TIME OF DEMINERALIZED FREEZE-DRIED BONE ON EARLY BONE REGENERATION IN OSSEOUS DEFECTS IN RATS)

  • 김상렬;김수관;장현선;조세인
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제28권3호
    • /
    • pp.188-195
    • /
    • 2002
  • The purpose of this investigation was to evaluate the relationship between the hydration time of demineralized freeze-dried bone (DFDB) and early new bone formation in rat calvarial defects filled with DFDB. Rats (n = 43) were divided into 4 experimental groups. Standard, transosseous circular defects of the calvaria were made midparietally. In experimental group 1, the defect was grafted immediately after soaking the DFDB. In experimental group 2, the defects were grafted with DFDB after soaking the DFDB for 10 minutes. In experimental groups 3 and 4, the defects were filled after soaking the DFDB for 30 and 60 minutes, respectively. Graft sites were analyzed histologically after healing periods of 1, 2, or 4 weeks. Each group showed similar bone regeneration at each time point by histological analysis. The results of this study were as follows: 1. After 1 week, a significant amount of inflammation, granulation tissue, and edema were found. A small amount of bone was seen, but the amount of bone did not differ between groups. 2. After 2 weeks, a small amount of new bone formation and DFDB resorption were observed. 3. After 4 weeks, a greater amount of new bone formation was observed. The greatest amount of bone formation occurred in experimental group 4 after 4 weeks. We conclude that the hydration time of DFDB does not affect new bone formation and that it is very important to control inflammation in bone grafting.

흰쥐 두개골 결손부에서 베타-트리칼슘 인산염과 탈단백우골의 골형성 효과 (The Effect of $\beta$-Tricalcium Phosphate and Deproteinized Bovine Bone on Bone Formation in the Defects of Rat Calvaria)

  • 정승곤;박홍주;유선열
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제32권4호
    • /
    • pp.313-323
    • /
    • 2010
  • Purpose: This study was conducted to evaluate the effect of beta-tricalcium phosphate (Cerasorb$^{(R)}$, Germany) and deproteinized bovine bone (Bio-Oss$^{(R)}$, Switzerland) grafted to the defect of rat calvaria artificially created and the effect of use of absorbable membrane (BioMesh$^{(R)}$, Korea) on new bone formation. Materials and Methods: Transosseous circular calvarial defects with diameters of 5 mm were prepared in the both parietal bone of 30 rats. In the control group I, no specific treatment was done on the defects. In the control group II, the defects were covered with absorbable membrane. In the experimental group I, deproteinized bovine bone was grafted without absorbable membrane; in the experimental group II, deproteinized bovine bone was grafted with absorbable membrane; in the experimental group III, beta-tricalcium phosphate was grafted without absorbable membrane; in the experimental group IV, beta-tricalcium phosphate was grafted with absorbable membrane. The animals were sacrificed after 3 weeks and 6 weeks respectively, and histologic and histomorphometric evaluations were performed. Results: Compare to the control groups, the experimental groups showed more newly formed bone. Between the experimental groups, beta-tricalcium phosphate showed more resorption than deproteinized bovine bone. Stabilization of grafted material and interception of the soft tissue invasion was observed in the specimen treated with membrane. There was no statistical difference between the experimental group I, III and experimental group II, IV classified by graft material, but statistically significant increase in the amount of newly formed bone was observed in the experimental group I, II and II, IV classified by the use of membrane (P<0.05). Conclusion: Both beta-tricalcium phosphate and deproteinized bovine bone showed similar osteoconductibility, but beta-tricalcium phosphate is thought to be closer to ideal synthetic graft material because it showed higher resorption rate in vivo. Increased new bone formation can be expected in bone graft with use of membrane.

흡수성 차폐막에 접목된 두개관골세포의 골조직 재생에 미치는 영향 (Effect of Calvarial Cell Inoculated Onto the Biodegradable Barrier Membrane on the Bone Regeneration)

  • 유부영;이만섭;권영혁;박준봉;허익
    • Journal of Periodontal and Implant Science
    • /
    • 제29권3호
    • /
    • pp.483-509
    • /
    • 1999
  • Biodegradable barrier membrane has been demonstrated to have guided bone regeneration capacity on the animal study. The purpose of this study is to evaluate the effects of cultured calvarial cell inoculated on the biodegradable barrier membrane for the regeneration of the artificial bone defect. In this experiment 35 Sprague-Dawley male rats(mean BW 150gm) were used. 30 rats were divided into 3 groups. In group I, defects were covered periosteum without membrane. In group II, defects were repaired using biodegradable barrier membrane. In group III, the defects were repaired using biodegradable barrier membrane seeded with cultured calvarial cell. Every surgical procedure were performed under the general anesthesia by using with intravenous injection of Pentobarbital sodium(30mg/Kg). After anesthesia, 5 rats were sacrificed by decapitation to obtain the calvaria for bone cell culture. Calvarial cells were cultured with Dulbecco's Modified Essential Medium contained with 10% Fetal Bovine Serum under the conventional conditions. The number of cell inoculated on the membrane were $1{\times}10^6$ Cells/ml. The membrane were inserted on the artificial bone defect after 3 days of culture. A single 3-mm diameter full-thickness artificial calvarial defect was made in each animal by using with bone trephine drill. After the every surgical intervention of animal, all of the animals were sacrificed at 1, 2, 3 weeks after surgery by using of perfusion technique. For obtaining histological section, tissues were fixed in 2.5% Glutaraldehyde (0.1M cacodylate buffer, pH 7.2) and Karnovsky's fixative solution, and decalcified with 0.1M disodium ethylene diaminetetraacetate for 3 weeks. Tissue embeding was performed in paraffin and cut parallel to the surface of calvaria. Section in 7${\mu}m$ thickness of tissue was done and stained with Hematoxylin-Eosin. All the specimens were observed under the light microscopy. The following results were obtained. 1 . During the whole period of experiment, fibrous connective tissue was revealed at 1week after surgery which meant rapid soft tissue recovery. The healing rate of defected area into new bone formation of the test group was observed more rapid tendency than other two groups. 2 . The sequence of healing rate of bone defected area was as follows ; test group, positive control, negative control group. 3 . During the experiment, an osteoclastic cell around preexisted bone was not found. New bone formation was originated from the periphery of the remaing bone wall, and gradually extended into central portion of the bone defect. 4 . The biodegradable barrier membrane was observed favorable biocompatibility during this experimental period without any other noticeable foreign body reaction. And mineralization in the newly formed osteoid tissue revealed relatively more rapid than other group since early stage of the healing process. Conclusively, the cultured bone cell inoculated onto the biodegradable barrier membrane may have an important role of regeneration of artificial bone defects of alveolar bone. This study thus demonstrates a tissue-engineering the approach to the repair of bone defects, which may have clinical applications in clinical fields of the dentistry including periodontics.

  • PDF

골다공증 유발 쥐에서 혈소판 농축 혈장이 골 재생에 미치는 영향 (Effect of platelet-rich plasma on bone regeneration in ovariectomized osteoporotic rats)

  • 조종문;강정경;서규원;류재준
    • 대한치과보철학회지
    • /
    • 제48권1호
    • /
    • pp.16-27
    • /
    • 2010
  • 연구 목적: 본 연구의 목적은 실험용 쥐의 초기 골 재생 과정에서 혈소판 농축 혈장 (platelet-rich plasma; PRP)이 난소호르몬 분비 유무에 따라 각각 어떤 효과를 나타내는지 확인 비교해 보는 것이다. 연구 재료 및 방법: 실험용 쥐 40마리 중 20마리에는 난소절제술 (ovariectomy; OVX)을 시행하여 골다공증을 유발시킨 상태에서 골 이식을 하였고, 나머지 20마리에는 난소절제술 없이 골 이식을 하였다. 또, 난소절제술을 시행한 쥐 중 10마리와 난소절제술을 시행하지 않은 쥐 중 10마리에는 골 이식 시 골전도성 합성골 이식재인 $MBCP^{TM}$ (Micro-& macro-porous biphasic calcium phosphate)에 혈소판 농축 혈장을 첨가하여 적용하고, 아래와 같은 실험군으로 구분하였다. A군; 10마리의 non-OVX 쥐/골 이식재 ($MBCP^{TM}$). B군; 10마리의 non-OVX 쥐/골 이식재($MBCP^{TM}$)+PRP. C군; 10마리의OVX 쥐/골 이식재($MBCP^{TM}$). D군; 10마리의OVX 쥐/골 이식재($MBCP^{TM}$)+PRP. 모든 실험동물의 두 개관 정중부에 직경 8 mm 원형의 임계 크기 결함을 한 개씩 인위적으로 형성한 후, 임계 크기 결함 내부에 골 이식재 및 혈소판 농축 혈장을 적용하여 골 이식술을 실시하였다. 골이식 시행 4주 후에 실험 동물을 희생시켜 표본을 제작한 후, 광학현미경상을 관찰하고 기존에 형성한 임계 크기 결함 내부에 새롭게 침착된 신생골의 면적을 측정하여 그 측정값을 통계 분석하였다. 결과: 신생골 면적 측정값을 각 군 간 비교하여 다음과 같은 결과를 얻었다. 1. 난소절제술이 시행되지 않은 정상 쥐에서는 혈소판 농축 혈장의 사용이 골 재생에 유의한 효과를 나타내지는 않았다 (p>.05). 2. 난소절제술이 시행된 골다공증 유발 쥐에서는 혈소판 농축 혈장의 사용이 골 재생에 유의한 효과를 나타내었다 (P<.05). 3. 혈소판 농축 혈장이 사용되지 않은 경우, 난소절제술이 시행된 골다공증 유발 쥐는 정상 쥐보다 골 재생 능력이 유의할 만큼 감소하였다 (P<.05). 4. 혈소판 농축 혈장이 사용된 경우, 난소절제술이 시행된 골다공증 유발 쥐라고 하더라도 정상 쥐보다 골 재생 능력이 유의할 만큼 감소하지는 않았다 (P>.05). 결론: 이상의 결과를 토대로, 골전도성 합성골 이식재와 함께 쓰인 혈소판 농축 혈장은 정상 쥐에서보다 난소절제술이 시행된 골다공증 유발 쥐에서 골 재생 및 치유에 더 큰 효과가 있음을 알 수 있었다.

옥수수(Zea Mays L.) 불검화 추출물과 후박(Magnoliae cortex) 추출물의 혼합물이 백서의 두개골 재생에 미치는 영향 (Tissue Regenerative activity of Zea Mays L. and Magnoliae cortex extract mixtures)

  • 김태일;류인철;정종평;이용무;구영
    • Journal of Periodontal and Implant Science
    • /
    • 제32권2호
    • /
    • pp.403-414
    • /
    • 2002
  • I. Purpose of Study Zea Mays L. has been known to be effective for improving periodontal health and Magnoliae cortex to have effective antibacterial and antimicrobial activity against periodontal pathogens. The purpose of this study was to examine the biologic effects of Zea Mays L. and Magnoliae cortex extract mixtures on healing of rat calvarial bone defects. II. Materials & Methods 8mm circular defects were prepared on rat calvaria during surgical procedures of 180 Sprague-Dawley rats. The ethanolic extracts of Magnoliae cortex and Zea Mays L. and these two natural extract 1:1 and 2:1 (Magnoliae: Zea Mays L.) ratio mixtures were oral administrated by oral zondes once a day at two different dose of 94.5mg/kg, 189mg/kg body weight. There are nine groups of rats in this study: control group (no sample loading), Magnoliae cortex extract loading groups (I,II)(94.5mg/kg,189mg/kg respectively), Zea Mays L. extract loading groups (I,II), M:Z(1:1) loading groups (I,II), M:Z(2:1) loading groups(I,II). Rats were sacrificed at 4 weeks and 6 weeks after surgery. New bone formations around calvarial defects were radiographically and histologically measured by computerassisted histomorphometry. Each data was statistically analyzed by One-way ANOVA test. III. Results There were statistical significances between negative control group and the other test groups on radiographical and histological quantitative assessments. Among test groups, mixture groups showed statistical significances, especially, M:Z (2:1) groups (I and II) were highly significant.(p<0.05) These results implicated that the mixture of Magnoliae and Zea Mays L. (2:1 mixing ratio) with 94.5mg/kg concentration might be highly effective on the wound healing of bony defected site and have potential possibilities as a useful drug to promote bone tissue regeneration.

백서 두개골에서 이종골 이식 후 치유에 관한 실험적 연구 (THE EXPERIMENTAL STUDY ON THE HEALING PROCESS OF XENOGRAFT IN THE CRANIUM OF RAT)

  • 조용석;김경원
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제21권1호
    • /
    • pp.13-22
    • /
    • 1999
  • The purpose of this investigation was to evaluate the acceptability of the collagen-based xenograft ($Laddec^{(R)}$). Full thickness bone defects were prepared in the calvaria of the rats. In the experimental groups the bone defects were filled with a kind of collagen based xenograft. And bone defects, which left without filling, were used as control groups. Sequential sacrifice was performed at the 1st, 2nd, 4th, 8th, and 16th weeks of experiment. 1. At the 1st week of experiment, infiltration of chronic inflammatory cell was observed in all groups. In the experimental group, resorption of the xenograft was initiated. 2. At the 2nd week of experiment, infiltration of chronic inflammatory cells was decreased in all groups. In the experimental group, active resorption of xenograft and new bone formation from the periphery of the xenograft was observed. 3. At the 4th and 8th weeks of experiment, more resorption of the xenograft and new bone formation with calcification was observed in the experimental group. 4. At the 16th week of experiment, small bone trabecula was formed partially in the control group but that couldn't fill the whole bone defect. In the experimental group, more advanced resorption of xenograft and more new bone formation was observed. However mid portion of the xenograft was still remained without resorption. 5. From this experiment, we concluded that the collagen-based xenograft had some osteoconductive but no osteoinductive property. So the xenograft would be used for the bone defect filling material where rapid bone remodeling is not required.

  • PDF

Combined effect of bisphosphonate and recombinant human bone morphogenetic protein 2 on bone healing of rat calvarial defects

  • Kim, Ho-Chul;Song, Jae-Min;Kim, Chang-Joo;Yoon, Sang-Yong;Kim, In-Ryoung;Park, Bong-Soo;Shin, Sang-Hun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제37권
    • /
    • pp.16.1-16.7
    • /
    • 2015
  • Background: This study aimed to investigate new bone formation using recombinant human bone morphogenetic protein 2 (rhBMP-2) and locally applied bisphosphonate in rat calvarial defects. Methods: Thirty-six rats were studied. Two circular 5 mm diameter bony defect were formed in the calvaria using a trephine bur. The bony defect were grafted with $Bio-Oss^{(R)}$ only (group 1, n = 9), $Bio-Oss^{(R)}$ wetted with rhBMP-2 (group 2, n = 9), $Bio-Oss^{(R)}$ wetted with rhBMP-2 and 1 mM alendronate (group 3, n = 9) and $Bio-Oss^{(R)}$ wetted with rhBMP-2 and 10 mM alendronate (group 4, n = 9). In each group, three animals were euthanized at 2, 4 and 8 weeks after surgery, respectively. The specimens were then analyzed by histology, histomorphometry and immunohistochemistry analysis. Results: There were significant decrease of bone formation area (p < 0.05) between group 4 and group 2, 3. Group 3 showed increase of new bone formation compared to group 2. In immunohistochemistry, collagen type I and osteoprotegerin (OPG) didn't show any difference. However, receptor activator of nuclear factor ${\kappa}B$ ligand (RANKL) decreased with time dependent except group 4. Conclusion: Low concentration bisphosphonate and rhBMP-2 have synergic effect on bone regeneration and this is result from the decreased activity of RANKL of osteoblast.

유전자재조합 인간 골형성단백2 및 생흡수성고분자를 이용한 골형성유도체의 개발 (DEVELOPMENT OF BONE REGENERATING MATERIAL USING BONE MORPHOGENETIC PROTEIN(rhBMP-2) AND BIORESORBABLE POLYMER)

  • 이종호;김종원;안강민;김각균;이장희
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제21권4호
    • /
    • pp.325-331
    • /
    • 1999
  • We tested the bone regenerating capacity and histologic response of bioresorbable matrix-type implant, which was made with Poly(lactide-co-glycolide)(PLGA) and bone apatite for the carrier of bone morphogenetic protein(BMP). The critical size defect of 8mm in diameter was created at the calvaria of SD rats(n=18), and repaired with polymer implant with $15{\mu}g$ of rhBMP-2(n=9) or without it(n=9). At 2 weeks, 1 months after implantation, the animals were sacrificed(3 animals at every interval and group) and histologically evaluated. The calvarial defect which was repaired with polymer with BMP healed with newly formed bone about 70% of total defect. But that without BMP showed only 0 to under 30% bony healing. Inflammatory response was absent in both group through the experimental period, but there's marked foreign body giant response though it was a little less significant in polymer with BMP group. As the polymer was resorbed, the space was infiltrated and replaced by fibrovascular tissue, not by bone. In conclusion, our formulation of bioresorbable matrix implant loaded with bone morphogenetic protein works good as a bone regenerating material. However, it is mandatory to devise our system to have better osteoinductive and osteoconductive property, and less multinucleated giant cell response.

  • PDF