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Figure 1. Negative control group (1wk)
Photomicrographs showed distinguished line between pre—existed bone and con—
nective tissue, and numerous inflammatory cell were infiltrated not only in the cen—
ter but in the margin of defected area (Figure N1).
On high magnificated photo, there were no newly formed capillary in the defected
area except loose connective tissue (Figure N1, a).

Figure 2. Positive control group (1wk)
Most of defected area was occupied with dense connective tissue. Many capillary
were distributed in some area of defected area but there were no sign of osteoblast
and new bone formation(Figure P1, a).

Figure 3. Experimental group (1wk)
In control site, dense connective tissue were observed in the whole defected area
with abundant fiber which had regular polarization to same direction (Figure T1).
There were no inflammatory cell invasion, but many newly formed capillary dis—
tributed broadly in the defected area. Osteoblast were arranged along the curvated
portion of remaining bone and there was distinguished line clearly between con—
nective tissue and pre—existing bone (Figure T1, a).

Figure 4. Negative control group (2wks)
Photomicrographs revealed abundant capillary were extended into dense connec—
tive tissue which were filled in defected area without inflammatory cell.
It was observed small amount of osteoid proliferated from the edge toward center
of the bone defected area (Fig N2, a).

Figure 5. Positive control group (2wks)
New bone formation was observed on the large part of defected area, and many
osteoblast were arranged along the osteoid tissue extended from the margin of
pre—existing bone (Fig P2, a). In the center of osteoid tissue, many osteocytes
were surrounded by extracellular matrix, and there were numerous capillary
around high degree of bone forming activity (Fig P2, b).

Figure 6. Experimental group (2wks)
Dense connective tissue occupied in the dome shape defected area was almost
replaced by new formed bone tissue, and highly stained mineralized zone in the
osteoid tissue showed more remarkable than positive control group (Figure T2, a).
The boundary line between old and new bone became more unclear, and in the
magnified photograph osteocytes were circumscribed by the highly mineralized
osteoid tissue. But new formed bone tissue could not completely cover the whole
defected area (Figure T2, b).

Figure 7. Negative control group (3WKks)
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Inflammatory cell invasion was other groups (Figure T3, b).
not observed any more. Defected
area was filled with dense col—
lagenous fiber which showed
regular polarity, and new bone
surrounded by capillary was
occupied in some part of center
portion (Figure N3, a).

Expansion of new bone formation
was observed from the edge of
remaining bone, and osteocytes
were circumscribed by the highly
mineralized osteoid tissue, but the
amount of osteoid tissue was
smaller than other groups (Figure
N3, b).

Figure 8. Positive control group (3wks)
Photomicrograph showed unclear
boundary line between old and
new bone. Even though large
amount of bone trabeculae were
observed, the density of mineral—
ization in the osteoid were not
remarkable (Figure P3, a). Some
part of disperse and resorption of
barrier membrane were seen due
to the direction of dissection of
specimen (Figure P3, b).

Figure 9. Experimental group (3wks)
Most of the dome shaped defected
area was replaced by newly
formed bone tissue except some
part of dense connective tissue
(Figure T3). Remarkable differ—
ences of mineralization of newly
formed bone tissue was observed
(Figure T3, a). The proportion of
new bone filled in defected area
showed more prominent than
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—Abstract—

Effect of Calvarial Cell
Inoculated Onto the
Biodegradable
Barrier Membrane on the
Bone Regeneration

Bu—Young Yu, Man—Sup Lee, Young—Hyuk
Kwon, Joon—Bong Park, Yeek Herr
Department of Periodontology, College of
Dentistry, Kyung Hee University

Biodegradable barrier membrane has
been demonstrated to have guided bone
regeneration capacity on the animal study.
The purpose of this study is to evaluate the
effects of cultured calvarial cell inoculated
on the biodegradable barrier membrane for
the regeneration of the artificial bone
defect. In this experiment 35 Sprague—
Dawley male rats(mean BW 150gm) were
used.

30 rats were divided into 3 groups. In
group |, defects were covered periosteum
without membrane. In group I, defects
were repaired using biodegradable barrier
membrane. In group I, the defects were
repaired using biodegradable barrier mem—
brane seeded with cultured calvarial cell.

Every surgical procedure were performed
under the general anesthesia by using with
intravenous injection of Pentobarbital sodi—
um(30mg/Kg). After anesthesia, 5 rats
were sacrificed by decapitation to obtain the

calvaria for bone cell culture. Calvarial cells
were cultured with Dulbecco's Modified
Essential Medium contained with 10% Fetal
Bovine Serum under the conventional con—
ditions.

The number of cell inoculated on the
membrane were 1x106 Cells/ml. The
membrane were inserted on the artificial
bone defect after 3 days of culture.

A single 3—mm diameter full—thickness
artificial calvarial defect was made in each
animal by using with bone trephine drill.

After the every surgical intervention of
animal, all of the animals were sacrificed at
1, 2, 3 weeks after surgery by using of
perfusion technique. For obtaining histolog—
ical section, tissues were fixed in 2.5%
Glutaraldehyde (0.1M cacodylate buffer, pH
7.2) and Karnovsky's fixative solution, and
decalcified with 0.1M disodium ethylene
diaminetetraacetate for 3 weeks. Tissue
embeding was performed in paraffin and cut
parallel to the surface of calvaria. Section in
7 thickness of tissue was done and
stained with Hematoxylin—Eosin. All the
specimens were observed under the light
microscopy.

The following results were obtained.

1. During the whole period of experi—
ment, fibrous connective tissue was
revealed at 1week after surgery which
meant rapid soft tissue recovery. The
healing rate of defected area into new
bone formation of the test group was
observed more rapid tendency than
other two groups.

2. The sequence of healing rate of
bone defected area was as follows



test group, positive control, negative
control group.

3. During the experiment, an osteo—
clastic cell around preexisted bone
was not found. New bone formation
was originated from the periphery of
the remaing bone wall, and gradually
extended into central portion of the
bone defect.

4. The biodegradable barrier mem—

brane was observed favorable bio—
compatibility during this experimental
period without any other noticeable
foreign body reaction.
And mineralization in the newly formed
osteoid tissue revealed relatively more
rapid than other group since early
stage of the healing process.

Conclusively, the cultured bone cell inoc—
ulated onto the biodegradable barrier mem—
brane may have an important role of
regeneration of artificial bone defects of
alveolar bone. This study thus demon—
strates a tissue—engineering the approach
to the repair of bone defects, which may
have clinical applications in clinical fields of
the dentistry including periodontics.
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