• Title/Summary/Keyword: Calpain-1

Search Result 41, Processing Time 0.02 seconds

Calpains and Apoptosis

  • Tagliarino, Colleen;Pink, John J.;Boothman, David A.
    • Animal cells and systems
    • /
    • v.5 no.4
    • /
    • pp.267-274
    • /
    • 2001
  • Calpains are a family of cysteine proteases existing primarily in two forms designated by the $Ca^{2+}$ concentration needed for activation in vitro, $\mu$-calpain (calpain-I) and m-calpain (calpain-II). The physiologica1 roles of calpains remain unclear. Many groups have proposed a role for calpains In apoptosis, but their patterns of activation are not well characterized. Calpains have been implicated in neutrophil apoptosis, glucocorticoid-induced thymocyte apoptosis, as well as many other apoptotic pathways. Calpain activation in apoptosis is usually linked upstream or downstream to caspase activation, or in a parallel pathway alongside caspase activation. Calpains have been suggested to be involved in DNA fragmentation (via endonuclease activation), but also as effector proteases that cleave cellular proteins involved in DNA repair, membrane associated proteins and other homeostatic regulatory proteins. Recently, our laboratory demonstrated $\mu$-calpain activation in NAD(P)H: quinone oxidoreducatse 1 (NQO1)-expressing cells after exposure to $\beta$-lapachone, a novel quinone and potential chemo- and radio-therapeutic agent. Increased cytosolic $Ca^{2+}$ in NQO1-expressing cells after $\beta$-lapachone exposures were shown to lead to $\mu$-calpain activation. In turn, $\mu$-calpain activation was important for substrate proteolysis and DNA fragmentation associated with apoptosis. Upon activation, $\mu$-calpain translocated to the nucleus where it could proteolytically cleave PARP and p53. We provided evidence that $\beta$-lapachone-induced, $\mu$-calpain stimulated, apoptosis did not involve any of the known caspases; known apoptotic caspases were not activated after $\beta$-lapachone treatment of NQO1-expressing cells, nor did caspase inhibitors have any effect on $\beta$-1apachone-induced cell death. Elucidation of processes by which $\beta$-1apachone-stimulated $\mu$-calpain activation and calpains ability to activate endonucleases and induce apoptosis independent of caspase activity will be needed to further develop/modulate $\beta$-lapachone for treatment of human cancers that over-express NQO1.

  • PDF

Ginsenoside Rg1 alleviates vascular remodeling in hypoxia-induced pulmonary hypertension mice through the calpain-1/STAT3 signaling pathway

  • Chenyang Ran;Meili Lu;Fang Zhao;Yi Hao;Xinyu Guo;Yunhan Li;Yuhong Su;Hongxin Wang
    • Journal of Ginseng Research
    • /
    • v.48 no.4
    • /
    • pp.405-416
    • /
    • 2024
  • Background: Hypoxic pulmonary hypertension (HPH) is the main pathological change in vascular remodeling, a complex cardiopulmonary disease caused by hypoxia. Some research results have shown that ginsenoside Rg1 (Rg1) can improve vascular remodeling, but the effect and mechanism of Rg1 on hypoxia-induced pulmonary hypertension are not clear. The purpose of this study was to discuss the potential mechanism of action of Rg1 on HPH. Methods: C57BL/6 mice, calpain-1 knockout mice and Pulmonary artery smooth muscle cells (PASMCs) were exposed to a low oxygen environment with or without different treatments. The effect of Rg1 and calpain-1 silencing on inflammation, fibrosis, proliferation and the protein expression levels of calpain-1, STAT3 and p-STAT3 were determined at the animal and cellular levels. Results: At the mouse and cellular levels, hypoxia promotes inflammation, fibrosis, and cell proliferation, and the expression of calpain-1 and p-STAT3 is also increased. Ginsenoside Rg1 administration and calpain-1 knockdown, MDL-28170, and HY-13818 treatment showed protective effects on hypoxia-induced inflammation, fibrosis, and cell proliferation, which may be associated with the downregulation of calpain-1 and p-STAT3 expression in mice and cells. In addition, overexpression of calpain 1 increased p-STAT3 expression, accelerating the onset of inflammation, fibrosis and cell proliferation in hypoxic PASMCs. Conclusion: Ginsenoside Rg1 may ameliorate hypoxia-induced pulmonary vascular remodeling by suppressing the calpain-1/STAT3 signaling pathway.

Ginsenoside Rg1 ameliorates chronic intermittent hypoxia-induced vascular endothelial dysfunction by suppressing the formation of mitochondrial reactive oxygen species through the calpain-1 pathway

  • Fang Zhao;Meili Lu;Hongxin Wang
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.144-154
    • /
    • 2023
  • Background: As the major pathophysiological feature of obstructive sleep apnea (OSA), chronic intermittent hypoxia (CIH) is vital for the occurrence of cardiovascular complications. The activation of calpain-1 mediates the production of endothelial reactive oxygen species (ROS) and impairs nitric oxide (NO) bioavailability, resulting in vascular endothelial dysfunction (VED). Ginsenoside Rg1 is thought to against endothelial cell dysfunction, but the potential mechanism of CIH-induced VED remains unclear. Methods: C57BL/6 mice and human coronary artery endothelial cells (HCAECs) were exposed to CIH following knockout or overexpression of calpain-1. The effect of ginsenoside Rg1 on VED, oxidative stress, mitochondrial dysfunction, and the expression levels of calpain-1, PP2A and p-eNOS were detected both in vivo and in vitro. Results: CIH promoted VED, oxidative stress and mitochondrial dysfunction accompanied by enhanced levels of calpain-1 and PP2A and reduced levels of p-eNOS in mice and cellular levels. Ginsenoside Rg1, calpain-1 knockout, OKA, NAC and TEMPOL treatment protected against CIH-induced VED, oxidative stress and mitochondrial dysfunction, which is likely concomitant with the downregulated protein expression of calpain-1 and PP2A and the upregulation of p-eNOS in mice and cellular levels. Calpain-1 overexpression increased the expression of PP2A, reduced the level of p-eNOS, and accelerated the occurrence and development of VED, oxidative stress and mitochondrial dysfunction in HCAECs exposed to CIH. Moreover, scavengers of O2·-, H2O2, complex I or mitoKATP abolished CIH-induced impairment in endothelial-dependent relaxation. Conclusion: Ginsenoside Rg1 may alleviate CIH-induced vascular endothelial dysfunction by suppressing the formation of mitochondrial reactive oxygen species through the calpain-1 pathway.

Calpain Protease-dependent Post-translational Regulation of Cyclin D3 (Calpain protease에 의한 cyclin D3의 post-translation조절)

  • Hwang, Won Deok;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • Cyclin D is a member of the cyclin protein family, which plays a critical role as a core member of the mammalian cell cycle machinery. D-type cyclins (D1, D2, and D3) bind to and activate the cyclin-dependent kinases 4 and 6, which can then phosphorylate the retinoblastoma tumor suppressor gene products. This phosphorylation in turn leads to release or derepression of E2F transcription factors that promote progression from the G1 to S phase of the cell cycle. Among the D-type cyclins, cyclin D3 encoded by the CCND3 gene is one of the least well studied. In the present study, we have investigated the biochemistry of the proteolytic mechanism that leads to loss of cyclin D3 protein. Treatment of human prostate carcinoma PC-3-M cells with lovastatin and actinomycin D resulted in a loss of cyclin D3 protein that was completely reversible by the peptide aldehyde calpain inhibitor, LLnL. Additionally, using inhibitors for various proteolytic systems, we show that degradation of cyclin D3 protein involves the $Ca^{2+}$-activated neutral protease calpain. Moreover, the half-life of cyclin D3 protein half-life increased by at least 10-fold in PC-3M cells in response to the calpain inhibitor. We have also demonstrated that the transient expression of the calpain inhibitor calpastatin increased cyclin D3 protein in serum-starved NIH 3T3 cells. These data suggested that the function of cyclin D3 is regulated by $Ca^{2+}$-dependent protease calpain.

A Correlative Study on Aβ and CD95 Pathway Independent to Ca2+ Dependent Protease and Activation of Caspase Activation

  • Tuyet, Pham Thi Dieu
    • Journal of Integrative Natural Science
    • /
    • v.7 no.1
    • /
    • pp.25-38
    • /
    • 2014
  • Amyloid-${\beta}$-peptide ($A{\beta}$) is important in the pathogenesis of Alzheimer's disease (AD). Calpain ($Ca^{2+}$-dependent protease) and caspase-8 (the initiating caspase for the extrinsic, receptor-mediated apoptosis pathway) have been implicated in $AD/A{\beta}$ toxicity. We found that $A{\beta}$ promoted degradation of calpastatin (the specific endogenous calpain inhibitor); calpastatin degradation was prevented by inhibitors of either calpain or caspase-8. The results implied a cross-talk between the two proteases and suggested that one protease was responsible for the activity of the other one. In neuron-like differentiated PC12 cells, calpain promotes active caspase-8 formation from procaspase-8 via the $A{\beta}$ and CD95 pathways, along with degradation of the procaspase-8 processing inhibitor caspase-8 (FLICE)-like inhibitory protein, short isoform (FLIPS). Inhibition of calpain (by pharmacological inhibitors and by overexpression of calpastatin) prevents the cleavage of procaspase-8 to mature, active caspase-8, and inhibits FLIPS degradation in the $A{\beta}$-treated and CD95-triggered cells. Increased cellular Ca2+ per se results in calpain activation but does not lead to caspase-8 activation or FLIPS degradation. The results suggest that procaspase-8 and FLIPS association with cell membrane receptor complexes is required for calpain-induced caspase-8 activation. The results presented here add to the understanding of the roles of calpain, caspase- 8, and CD95 pathway in $AD/A{\beta}$ toxicity. Calpain-promoted activation of caspase-8 may have implications for other types of CD95-induced cell damage, and for nonapoptotic functions of caspase-8. Inhibition of calpain may be useful for modulating certain caspase-8-dependent processes.

Chalcones as Novel Non-peptidic μ-Calpain Inhibitors

  • Lee, Eun-Young;Jang, In-Hye;Shin, Min-Jung;Cho, Hee-Ju;Kim, Jung-Sook;Eom, Ji-Eun;Kwon, Young-Joo;Na, Young-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3459-3464
    • /
    • 2011
  • In order to extend the scaffold of non-peptidic calpain inhibitor, we have designed and synthesized 14 chalcone derivatives categorized into two groups based on their structures. Compounds 7 ($IC_{50}=16.67{\pm}0.42{\mu}M$) and 8 ($IC_{50}=16.92{\pm}0.14{\mu}M$) in group A were most selective ${\mu}$-calpain inhibitor over cathepsins B and L. On the other hand, compound 14 possessing furan ring exhibited inhibitory activities for ${\mu}$-calpain ($IC_{50}=15.39{\pm}1.34{\mu}M$) as well as cathepsin B ($IC_{50}=20.59{\pm}1.35{\mu}M$). The results discovered implicated that chalcone analogues possessing proper size and functional groups can be a potential lead core for selective non-peptidic ${\mu}$-calpain inhibitor. Furthermore, dual inhibitors for ${\mu}$-calpain and cathepsin B can also be developed from chalcones by elaborate structure manipulation.

Regulation of Cyclin D3 by Calpain Protease in Human Breast Carcinoma MDA-MB-231 Cells (인체 유방암세포에서 calpain protease에 의한 cyclin D3의 발현 조절)

  • Choi, Byung-Tae;Kim, Gun-Do;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.16 no.4
    • /
    • pp.598-604
    • /
    • 2006
  • The $Ca^{2+}-activated$ neutral protease calpain induced proteolysis has been suggested to play a role in certain cell growth regulatory proteins. Cyclin proteolysis is essential for cell cycle progression. D-type cyclins, which form an assembly with cyclin-dependent kinases (cdk4 and cdk6), are synthesized earlier in G1 of the cell cycle and seem to be induced in response to external signals that promote entry into the cell cycle. Here we show that cyclin D3 protein levels are regulated at the posttranscriptional level by calpain protease. Treatment of human breast carcinoma MDA-MB-231 cells with lovastatin and actinomycin D resulted in a loss of cyclin D3 protein that was completely reversible by the peptide aldehyde calpain inhibitor, LLnL. The specific inhibitor of the 26S proteasome, lactacystin, the lysosome inhibitors, ammonium chloride and chloroquine, and the serine protease inhibitor, phenylmethylsulfonylfluoride (PMSF), did not block the degradation of cyclin D3 by lovastatin and actinomycin D. Results of in vitro degradation of cyclin D3 by purified calpain showed that cyclin D3 protein is degraded in a $Ca^{2+}-dependent$ manner, and the half-life of cyclin D3 protein was dramatically increased in LLnL treated cells. These data suggested that cyclin D3 protein is regulated by the $Ca^{2+}-activated$ protease calpain.

Regulation of m-Calpain Activity by α-Synuclein and Its C-terminal Fragment (α-syn61-140)

  • Lee, In-Hwan;Kim, Hyun-Jin;Lee, Choong-Hwan;Paik, Seung R.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.7
    • /
    • pp.1001-1004
    • /
    • 2006
  • The m-calpain activity hydrolyzing a fluorogenic substrate of N-Succinyl-Leu-Leu-Val-Tyr-7-amino-4-methylcourmarin (LLVY-AMC) was significantly stimulated by more than two-fold in the presence of 5$\mu$M $\alpha$synuclein at $15{^{\circ}C}$. The stimulation was also confirmed with azocasein. The stimulation of the peptide hydrolyzing activity required structural intactness of $\alpha$-synuclein since the C-terminally or N-terminally modified proteins such as $\beta$-synuclein, $\alpha$-syn1-97, and $\alpha$-syn61-140 did not increase the proteolytic activity. Instead, however, the N-terminally truncated $\alpha$-syn61-140 was shown to drastically suppress the calpain activity. Since the N-terminal truncation was known to be the primary cleaving event of calpain-mediated proteolysis of $\alpha$-synuclein and the $\alpha$-syn61-140 has been demonstrated to be resistant against the calpain digestion, it has been proposed that the intracellular calpain activity could be regulated in a reciprocal manner by $\alpha$-synuclein and its proteolyzed C-terminal fragment. Based on the results, a possible physiological function of $\alpha$-synuclein has been suggested as a calpain regulator which contains both stimulatory and inhibitory activities.

Feeding strategies and ageing time alter calpain system proteins activities and meat quality of Braford steers

  • Coria, Maria Sumampa;Pighin, Dario;Grigioni, Gabriela;Palma, Gustavo Adolfo
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.272-280
    • /
    • 2022
  • Objective: The aim of this study was to evaluate the effect of ageing and feeding strategies on the calpain protease system and meat quality traits in Braford steers. Methods: Thirty Braford steers were employed; 15 animals were supplemented with corn silage during finishing and 15 were kept only on pasture. Meat quality traits and calpain system protein activity were evaluated in longissimus thoracis et lumborum (LTL) steaks aged for 2, 7, 14, and 21 days. Results: Aged meat showed higher pH and calcium content, while Warner Bratzler shear force (WBSF) decreased to day 21. No interaction between ageing and diet was seen for quality traits. Steers finished with corn silage showed higher values of water holding capacity, WBSF and free calcium, and lower values of pH and cooking loss. Calpain and calpastatin activities decreased with ageing. Finishing steers on pasture produced higher values of calpains and lower values of calpastatin activities. The higher values of calpain 1 activity were observed in muscles aged 2 days from pasture finished animals, and the lower activity of the inhibitor in the 21 days aged samples of the same group. Conclusion: These results suggest a diet by ageing interaction in calpains and calpastatin and this interaction impact in Warner Bratzler Shear Force in Braford LTL muscle.

Penicillide, a Nonpeptide Calpain Inhibitor, Produced by Penicillium sp. F60760

  • Chung, Myung-Chul;Lee, Ho-Jae;Chun, Hyo-Kon;Kho, Yung-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.2
    • /
    • pp.188-190
    • /
    • 1998
  • Penicillide, having a 5H, 7H-dibenzo[b,g][1,5] dioxocin-5-one skeleton, was isolated from the culture broth of Penicillium sp. F60760 as a nonpeptide inhibitor of calpain, a calcium-activated papain-like protease. The $IC_50$ value for the effect of penicillide against m-calpaln was $7.1{\mu}M$. However, penicillide did not inhibit papain at a concentration of $200{\mu}M$. These results suggest that penicillide is a new class of nonpeptide calpain inhibitor having an eight membered lactone ring.

  • PDF