Browse > Article
http://dx.doi.org/10.5352/JLS.2006.16.4.598

Regulation of Cyclin D3 by Calpain Protease in Human Breast Carcinoma MDA-MB-231 Cells  

Choi, Byung-Tae (Department of Anatomy and Biochemistry, Dongeui University College of Oriental Medicine and Department of Biomaterial Control, Dongeui University Graduate School)
Kim, Gun-Do (Department of Microbiology, College of Natural Sciences, Bukyong National University)
Choi, Yung-Hyun (Department of Anatomy, Dongeui University College of Oriental Medicine)
Publication Information
Journal of Life Science / v.16, no.4, 2006 , pp. 598-604 More about this Journal
Abstract
The $Ca^{2+}-activated$ neutral protease calpain induced proteolysis has been suggested to play a role in certain cell growth regulatory proteins. Cyclin proteolysis is essential for cell cycle progression. D-type cyclins, which form an assembly with cyclin-dependent kinases (cdk4 and cdk6), are synthesized earlier in G1 of the cell cycle and seem to be induced in response to external signals that promote entry into the cell cycle. Here we show that cyclin D3 protein levels are regulated at the posttranscriptional level by calpain protease. Treatment of human breast carcinoma MDA-MB-231 cells with lovastatin and actinomycin D resulted in a loss of cyclin D3 protein that was completely reversible by the peptide aldehyde calpain inhibitor, LLnL. The specific inhibitor of the 26S proteasome, lactacystin, the lysosome inhibitors, ammonium chloride and chloroquine, and the serine protease inhibitor, phenylmethylsulfonylfluoride (PMSF), did not block the degradation of cyclin D3 by lovastatin and actinomycin D. Results of in vitro degradation of cyclin D3 by purified calpain showed that cyclin D3 protein is degraded in a $Ca^{2+}-dependent$ manner, and the half-life of cyclin D3 protein was dramatically increased in LLnL treated cells. These data suggested that cyclin D3 protein is regulated by the $Ca^{2+}-activated$ protease calpain.
Keywords
Cyclin D3; proteolysis; calpain;
Citations & Related Records
연도 인용수 순위
  • Reference
1 King, R. W., R. J. Deshaies, J. M. Peters and M. W. Kirschner. 1996. How proteolysis drives the cell cycle. Science 274, 1652-1659   DOI   ScienceOn
2 Hartmann-Petersen, R., M. Seeger and C. Gordon. 2003. Transferring substrates to the 26S proteasome. Trends Biochem. Sci. 28, 26-31   DOI   ScienceOn
3 Kubbutat, M. H. and K. H. Vousden. 1997. Proteolytic cleavage of human p53 by calpain: a potential regulator of protein stability. Mol. Cell. Biol. 17, 460-468   DOI
4 Mellgren, R. L., Q. Lu, W. Zhang, M. Lakkis, E. Shaw and M. T. Mericle. 1996. Isolation of a Chinese hamster ovary cell clone possessing decreased mu-calpain content and a reduced proliferative growth rate. J. Biol. Chem. 271, 15568-15574   DOI
5 Walowitz, J. L., M. E. Bradley, S. Chen and T. Lee. 1998. Proteolytic regulation of the zinc finger transcription factor YY1, a repressor of muscle-restricted gene expression. J. Biol. Chem. 273, 6656-6661   DOI   ScienceOn
6 Sato, K. and S. Kawashima. 2001. Calpain function in the modulation of signal transduction molecules. Biol. Chem. 382, 743-751   DOI
7 Solomon, V. and A. L. Goldberg. 1996. Importance of the ATP-ubiquitin-proteasome pathway in the degradation of soluble and myofibrillar proteins in rabbit muscle extracts. J. Biol. Chem. 271, 26690-26697   DOI   ScienceOn
8 Squier, M. K. and J. J. Cohen. 1997. Calpain, an upstream regulator of thymocyte apoptosis. J. Immunol. 158, 3690-3697
9 Squier, M. K., A. J. Sehnert, K. S. Sellins, A. M. alkinson, E. Takano and J. J. Cohen. 1999. Calpain and calpastatin regulate neutrophil apoptosis. J. Cell. Physiol. 178, 311-319   DOI   ScienceOn
10 Suzuki, K. and H. Sorimachi. 1998. A novel aspect of calpain activation. FEBS Lett. 433, 1-4   DOI   ScienceOn
11 Suzuki, K., S. Hata, Y. Kawabata and H. Sorimachi. 2004. Structure, activation, and biology of calpain. Diabetes 53, S12-18   DOI   ScienceOn
12 Maki, C. G., J. M. Huibregtse and P. M. Howley. 1996. In vivo ubiquitination and proteasome-mediated degradation of p53. Cancer Res. 56, 2649-2654
13 Hunter, T. and J. Pines. 1994. Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell 79, 573-582   DOI   ScienceOn
14 Jakobisiak, M., S. Bruno, J. S. Skierski, Z. Darzynkiewicz. 1991. Cell cycle-specific effects of lovastatin. Proc. Natl. Acad. Sci. USA 88, 3628-3632
15 Josefsberg, L. B., O. Kaufman, D. Galiani, M. Kovo and N. Dekel. 2001. Inactivation of M-phase promoting factor at exit from first embryonic mitosis in the rat is independent of cyclin B1 degradation. Biol. Reprod. 64, 871-878   DOI   ScienceOn
16 Mellgren, R. L. 1980. Canine cardiac calcium-dependent proteases: Resolution of two forms with different requirements for calcium. FEBS Lett. 109, 129-133   DOI   ScienceOn
17 Murachi, T. 1989. Intracellular regulatory system involving calpain and calpastatin. Biochem. Int. 18, 263-294
18 Musat, M., V. V. Vax, N. Borboli, M. Gueorguiev, S. Bonner, M. Korbonits and A.B. Grossman. 2004. Cell cycle dysregulation in pituitary oncogenesis. Front. Horm. Res. 32, 34-62   DOI
19 Ortega, S., M. Malumbres and M. Barbacid. 2002. Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim. Biophys. Acta. 602, 73-87
20 Patel, Y. M. and M. D. Lane. 1996. Role of calpain in adipocyte differentiation. Proc. Natl. Acad. Sci. USA 96, 1279-1284
21 Roos-Mattjus, P. and L. Sistonen. 2004. The ubiquitin- proteasome pathway. Ann. Med. 36, 285-295   DOI   ScienceOn
22 Saido, T. C., H. Sorimachi and K. Suzuki. 1994. Calpain: new perspectives in molecular diversity and physiological- pathological involvement. FASEB J. 8, 814-822   DOI
23 Clurman, B. E., R. J. Sheaff, K. Thress, M. Groudine and J. M. Roberts. 1996. Turnover of cyclin E by the ubiquitin- proteasome pathway is regulated by cdk2 binding and cyclin phosphorylation. Genes Dev. 10, 1979-1990   DOI
24 Dynlacht, B. D. 1997. Regulation of transcription by proteins that control the cell cycle. Nature 389, 149-152   DOI   ScienceOn
25 Glotzer, M., A. W. Murray and M. W. Kirschner. 1991. Cyclin is degraded by the ubiquitin pathway. Nature 349, 132-138   DOI   ScienceOn
26 Franch, H. A. 2002. Pathways of proteolysis affecting renal cell growth. Curr Opin Nephrol. Hypertens. 2002 11: 445-450   DOI   ScienceOn
27 Goll, D. E., V. F. Thompson, R. G. Taylor and T. Zalewska. 1992. Is calpain activity regulated by membranes and autolysis or by calcium and calpastatin? Bioessays 14, 549-556   DOI
28 Gonen, H., D. Shkedy, S. Barnoy, N. S. Kosower and A. Ciechanover. 1997. On the involvement of calpains in the degradation of the tumor suppressor protein p53. FEBS Lett. 406, 17-22   DOI   ScienceOn
29 Hirai, S., H. Kawasaki, M. Yaniv and K. Suzuki. 1991. Degradation of transcription factors, c-Jun and c-Fos, by calpain. FEBS Lett. 287, 57-61   DOI   ScienceOn
30 Mellgren, R. L. 1987. Calcium-dependent proteases: an enzyme system active at cellular membranes? FASEB J. 1, 110-115   DOI
31 Sorimachi, H., T. C. Saido and K. Suzuki. 1994. New era of calpain research. Discovery of tissue-specific calpains. FEBS Lett. 343, 1-5   DOI   ScienceOn
32 Choi, Y. H., S. J. Lee, P. Nguyen, J. S. Jang, J. Lee, M. L. Wu, E. Takano, M. Maki, P. A. Henkart and T. B. Trepel. 1997. Regulation of cyclin D1 by calpain protease. J. Biol. Chem. 272, 28479-28484   DOI   ScienceOn
33 Lee, S. J., M. J. Ha, J. Lee, P. Nguyen, Y. H. Choi, F. Pirnia, W. K. Kang, X. F. Wang, S. J. Kim and J. B. Trepel. 1998. Inhibition of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase pathway induces p53-independent transcriptional regulation of p21(WAF1/CIP1) in human prostate carcinoma cells. J. Biol. Chem. 273, 10618-10623   DOI   ScienceOn
34 Ciechanover, A. 1994. The ubiquitin-proteasome proteolytic pathway. Cell 79, 13-21   DOI   ScienceOn