DOI QR코드

DOI QR Code

A Correlative Study on Aβ and CD95 Pathway Independent to Ca2+ Dependent Protease and Activation of Caspase Activation

  • Tuyet, Pham Thi Dieu (Department of Biotechnology, Hanoi University of Science and Technology, University of Hanoi)
  • 투고 : 2014.03.07
  • 심사 : 2014.03.25
  • 발행 : 2014.03.30

초록

Amyloid-${\beta}$-peptide ($A{\beta}$) is important in the pathogenesis of Alzheimer's disease (AD). Calpain ($Ca^{2+}$-dependent protease) and caspase-8 (the initiating caspase for the extrinsic, receptor-mediated apoptosis pathway) have been implicated in $AD/A{\beta}$ toxicity. We found that $A{\beta}$ promoted degradation of calpastatin (the specific endogenous calpain inhibitor); calpastatin degradation was prevented by inhibitors of either calpain or caspase-8. The results implied a cross-talk between the two proteases and suggested that one protease was responsible for the activity of the other one. In neuron-like differentiated PC12 cells, calpain promotes active caspase-8 formation from procaspase-8 via the $A{\beta}$ and CD95 pathways, along with degradation of the procaspase-8 processing inhibitor caspase-8 (FLICE)-like inhibitory protein, short isoform (FLIPS). Inhibition of calpain (by pharmacological inhibitors and by overexpression of calpastatin) prevents the cleavage of procaspase-8 to mature, active caspase-8, and inhibits FLIPS degradation in the $A{\beta}$-treated and CD95-triggered cells. Increased cellular Ca2+ per se results in calpain activation but does not lead to caspase-8 activation or FLIPS degradation. The results suggest that procaspase-8 and FLIPS association with cell membrane receptor complexes is required for calpain-induced caspase-8 activation. The results presented here add to the understanding of the roles of calpain, caspase- 8, and CD95 pathway in $AD/A{\beta}$ toxicity. Calpain-promoted activation of caspase-8 may have implications for other types of CD95-induced cell damage, and for nonapoptotic functions of caspase-8. Inhibition of calpain may be useful for modulating certain caspase-8-dependent processes.

키워드

참고문헌

  1. F. Altznauer, S. Conus ,A. Cavalli , G. Folkers , and H.U. Simon, "Calpain-1 regulates bax and subsequent Smac-dependent caspase-3 activation in neutrophil apoptosis", J. Biol. Chem., Vol. 279, pp. 5947-5957, 2004. https://doi.org/10.1074/jbc.M308576200
  2. S. Barbero, A. Mielgo, V. Torres, T. Teitz, D.J. Shields, and D. Mikolon, "Caspase-8 association with the focal adhesion complex promotes tumor cell migration and metastasis", Cancer Res., Vol. 69, pp. 3755-3763, 2009. https://doi.org/10.1158/0008-5472.CAN-08-3937
  3. N. Bizat, J.M. Hermel, S. Humbert, and C. Escratin, "In vivo calpain/caspase cross-talk during 3-nitropropionic acid-induced striatal degeneration. Implication of a calpain-mediated cleavage of active caspase-3", J. Biol. Chem., Vol. 278, pp. 43245-53, 2003. https://doi.org/10.1074/jbc.M305057200
  4. S. Black, M. Kadrov, P. Kaufmann, and B. Emans, "Syncytial fusion of human trophoblast depends on caspase 8" Cell Death Differ., Vol. 11, pp. 90-98, 2004. https://doi.org/10.1038/sj.cdd.4401307
  5. K. Blomgren, C. Zhu, X. Wang, J. O. Karlesson, and A.L. Leverin, "Synergistic activation of caspase-3 by m-calpain after neonatal hypoxia-ischemia. A mechanism of "pathological apoptosis?", J. Biol. Chem., Vol. 276, pp. 10191-10198, 2001. https://doi.org/10.1074/jbc.M007807200
  6. M. M. Bardford, "A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding", Anal. Biochem., Vol. 72, pp. 248-254, 1976. https://doi.org/10.1016/0003-2697(76)90527-3
  7. G. Cantrella, D. Uberti, T. Crasana, and M. Memo, "Neutralization of TRAIL death pathway protects human neuronal cell line from $\beta$-amyloid toxicity", Cell Death Differ., Vol. 10, pp. 134-141, 2003. https://doi.org/10.1038/sj.cdd.4401143
  8. D. W. Chang, Z. Xing, V. L Capacio, and M.E. Peter, "Interdimer processing mechanism of procaspase-8 activation", EMBO. J., Vol. 22, pp. 4132-4142, 2003. https://doi.org/10.1093/emboj/cdg414
  9. B. T. Chau, K. Guo, and L. Peng, "Direct Cleavage by the calcium-activated protease calpain can lead to inactivation of caspases", J. Biol. Chem., Vol. 275, pp. 5131-5135, 2000. https://doi.org/10.1074/jbc.275.7.5131
  10. P. Cottin, S. Poussard, Bacerzak, B. Aragon, J. J. Brustis, and A. Ducastaing, "Calpains andmyogenesis." in: Elce JS, editor. Calpain methods and protocols, New Jersey: Humana. Press. Inc, Vol. 17, pp. 173-180, 2000.
  11. A. Das, D. P. Garner, A. M. Del Re, J. J. Woodward, D. M. Kumar, and N. Agarwal, "Calpeptin provides functional neuroprotection to rat retinal ganglion cells following $Ca^{2+}$ influx", Brain. Res., Vol. 1084, pp. 146-157, 2006 https://doi.org/10.1016/j.brainres.2006.02.051
  12. S. M. De La Monte, Y. K. Sohn, and J. R. Wands, "Correlates of p53-and Fas (CD95)-mediated apoptosis in Alzheimer's disease", J. Neurol. Sci., Vol. 152, pp. 73-83, 1997 https://doi.org/10.1016/S0022-510X(97)00131-7
  13. A. I. Doseff, "Apoptosis: the sculptor of development", Stem. Cells. Develop., Vol. 13, pp. 473-483, 2004. https://doi.org/10.1089/scd.2004.13.473
  14. A. Fifre, I. Sponne, V. Koziel, B. Kriem, F. T. Y. Potin, and B. E. Bihain, "Microtubule-associated protein MAP1A, MAP1B, and MAP2 proteolysis during soluble amyloid $\beta$-peptide-induced neuronal apoptosis. Synergistic involvement of calpain and caspase-3", J. Biol. Chem., Vol. 281, pp. 229-240, 2006. https://doi.org/10.1074/jbc.M507378200
  15. D. Finlay and K. Vuori, "Novel noncatalytic role for caspase-8 in promoting Src mediated adhesion and Erk signalling in neuroblastoma cells", Cancer. Res., Vol. 67, pp. 11704-11711, 2007. https://doi.org/10.1158/0008-5472.CAN-07-1906
  16. U. Fischer, U. R. Janike, and K. Schulze-Osthoff, "Many cuts to ruin: a comprehensive update of caspase substrates", Cell Death Differ., Vol. 10, pp. 76-100, 2003. https://doi.org/10.1038/sj.cdd.4401160
  17. J. Hardy and D. J. Selkoe, "The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics", Science, Vol. 297, pp. 53-56, 2002.
  18. B. Helfer, B. C. Boswell, D. Finlay, A. Cipres, K. Vuori, and T. B. Kang, "Caspase-8 promotes cell motility and calpain activity under nonapoptotic conditions", Cancer Res., Vol. 66, pp. 4273-4278, 2006. https://doi.org/10.1158/0008-5472.CAN-05-4183
  19. A. O. Hueber, M. Zornig, A. M. Bernard, M. Chautan, and G. A. Evan, "Dominant negative as associated death domain protein mutant inhibits proliferation and leads to impaired calcium mobilization in both T-cells and fibroblasts", J. Biol. Chem., Vol. 275, pp. 10453-10462, 2000. https://doi.org/10.1074/jbc.275.14.10453
  20. K. J. Ivins, P. L. Thornton, T. T. Rohn, and C. W. Cotman, "Neuronal apoptosis induced by $\beta$- amyloid is mediated by caspase-8", Neurobiol. Dis., Vol. 6, pp. 440-449, 1999. https://doi.org/10.1006/nbdi.1999.0268
  21. T. B. Kang, T. Ben-Moshe, E. E. Varfolomeev, Y. Pewzner-Jung, N. Yogev, and A. Jurewicz, "Caspase-8 serves both apoptotic and non apoptotic roles", J. Immunol., Vol. 173, pp. 2976-2984, 2004. https://doi.org/10.4049/jimmunol.173.5.2976
  22. B. L. Kelly and A. Ferreira, "$\beta$-amyloid-induced dynamin 1 degradation is mediated by N-methyl-daspartate receptors in hippocampal neurons", J. Biol. Chem., Vol. 281, pp. 28079-28089, 2006. https://doi.org/10.1074/jbc.M605081200
  23. A. Koenig, J. Q. Russell, W. A. Rodgers, and R. C. Budd, "Spatial differences in active caspase-8 defines its role in T-activation versus cell death", Cell. Death. Differ., Vol. 15, pp. 1701-1711, 2008. https://doi.org/10.1038/cdd.2008.100
  24. Y. Kelin, L. Zhang, T. B. Kang, E. Appel, A. Kovalenko, and D. Wallach, "Caspase-8 deficiency facilitates cellular transformation in vitro", Cell. Death. Differ., Vol. 15, pp. 1350-1355, 2008. https://doi.org/10.1038/cdd.2008.88
  25. A. Krueger, I. Schmitz, S. Baumann, P. H. Krammer, and S. Kirchhoff, "Cellular FLICE-inhibitory protein splice variants inhibit different steps of caspase-8 activation at the CD95 death-inducing signaling complex", J. Biol. Chem., Vol. 276, pp. 20633-20640, 2001. https://doi.org/10.1074/jbc.M101780200
  26. K. V. Kuchibhotla, S. T. Goldman, C. R. Lattarulo, B. T. Hyman, and B. J. Bacskai, "$A\beta$ plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks", Neuron, Vol. 59, pp. 214-225, 2008. https://doi.org/10.1016/j.neuron.2008.06.008
  27. F. M. LaFerla, "Calcium dyshomeostasis and intracellular signalling in Alzheimer's disease", Nat. Rev. Neurosci., Vol. 3, pp. 862-872, 2002.
  28. M. Lamkanfi, N. Festjens, W. Declercq, T. Vanden-Berghe, and P. Vandenabeele, "Caspases in cell survival, proliferation and differentiation", Cell. Death. Differ., Vol. 14, pp. 44-55, 2007. https://doi.org/10.1038/sj.cdd.4402047
  29. J. Lauren, D. A. Gimbel, H. B. Nygaard, J. W. Gilbert, and S. M. Strittmatter, "Cellular prion protein mediates impairment of synaptic plasticity by amyloid-$\beta$ oligomers", Nature, Vol. 457, pp. 1128-1132, 2009. https://doi.org/10.1038/nature07761
  30. D. C. Lu, G. M. Shaked, E. Masliah, D. E. Bredesen, and E. H. Koo, "Amyloid - protein toxicitymediated by the formation of amyloid-$\beta$ protein precursor complexes", Ann. Neurol., Vol. 54, pp. 781-789, 2003. https://doi.org/10.1002/ana.10761
  31. S. Luschen, M. Falk, G. Scherer, S. Ussat, M. Pailsen, and S. Adam-Klages, "The Fas-associated death domain protein/caspase-8/c-FLIP signaling pathway is involved in TNFinduced activation of ERK", Exp. Cell. Res., Vol. 310, pp. 33-42, 2005. https://doi.org/10.1016/j.yexcr.2005.07.022
  32. J. Maelfait and R. Beyaert, "Non-apoptotic functions of caspase-8", Biochem. Pharmacol., Vol. 76, pp. 1365-1373, 2008. https://doi.org/10.1016/j.bcp.2008.07.034
  33. J. P. Medema, C. Scaffidi, F. C. Kischkel, A. Shevchenko, M. Mann, and P. H. Krammer, "FLICE is activatedby association with theCD95death-inducing signalingcomplex (DISC)", EMBO. J., Vol. 16, pp. 2794-2804, 1997. https://doi.org/10.1093/emboj/16.10.2794
  34. R. L. Mellgren, M. T. Mericle, and R. D. Lane, "Proteolysis of the calcium-dependent protease inhibitor by myocardial calcium-dependent protease", Arch. Biochem. Biophys., Vol. 246, pp. 233-239, 1986. https://doi.org/10.1016/0003-9861(86)90468-6
  35. Y. Morishima, Y. Gotoh, J. Zieg, T. Barrett, H. Takano, and R. Flavell, "$\beta$-Amyloid induces neuronal apoptosis via a mechanism that involves the c-Jun N-terminal kinase pathway and the induction of Fas ligand", J. Neurosci., Vol. 21, pp. 7551-7560, 2001.
  36. B. M. Murphy, E. M. Creagh, and S. J. Martin, "Interchain proteolysis, in the absence of a dimerization stimulus, can initiate apoptosis-associated caspase-8 activation", J. Biol. Chem., Vol. 279, pp. 36916-36922, 2004. https://doi.org/10.1074/jbc.M402039200
  37. T. Nakagawa and J. Yuan, "Cross-talk between two cysteine protease families: activation of caspase-12 by calpain in apoptosis", J. Cell. Biol., Vol. 150, pp. 887-894, 2000. https://doi.org/10.1083/jcb.150.4.887
  38. M. Nakamura, M. Inomata, S. Imajoh, K. Suzuki, and S. Kawashima, "Fragmentation of an endogenous inhibitor upon complex formation with highand low-$Ca^{2+}$-requiring forms of calcium-activated neutral proteases", Biochemistry, Vol. 28, pp. 449-455, 1989. https://doi.org/10.1021/bi00428a007
  39. R. A. Nixon, K. I. Saito, F. Grynspan, W. R. Griffin, S. Katayama, and T. Honda, "Calciumactivated neutral proteinase (calpain) system in aging and Alzheimer's disease", Ann. NY. Acad. Sci., Vol. 747, pp. 77-91, 1994.
  40. S. Orrenius, B. Zhivotovsky, and P. Nicotera, "Regulation of cell death: the calcium-apoptosis link", Nat. Rev. Mol. Cell. Biol., Vol. 4, pp. 552-565, 2003. https://doi.org/10.1038/nrm1150
  41. T. T. Rohn, R. A. Rissman, M. C. Davis, Y. E. Kim, C. W. Cotman, and E. Head, "Caspase-9 activation and caspase cleavage of tau in the Alzheimer's disease brain", Neurobiol. Dis., Vol. 11, pp. 341-354, 2002. https://doi.org/10.1006/nbdi.2002.0549
  42. K. A. Roth, "Caspases, apoptosis, and Alzheimer disease: causation, correlation, and confusion", J. Neuropathol. Exp. Neurol., Vol. 60, pp. 829-838, 2001. https://doi.org/10.1093/jnen/60.9.829
  43. P. Rovere, E. Clementi, M. Ferrarini, S. Heltai, C. Sciorati, and M. G. Sabbadini, "CD95 engagement releases calcium from intracellular stores of long term activated, apoptosis-prone T cells", J. Immunol., Vol. 156, pp. 4631-4637, 1996.
  44. A. Ruiz-Vela, G. G. de Buitrago, and A. C. Martinez, "Implication of calpain in caspase activation during B cell clonal deletion", EMBO. J., Vol. 18, pp. 4988-4998, 1999. https://doi.org/10.1093/emboj/18.18.4988
  45. O. Simakova and N. J. Arispe, "The cell-selective neurotoxicity of the Alzheimer's A$\beta$ peptide is determined by surface phosphatidylserine and cytosolicATP levels.Membrane binding is required for $A\beta$ toxicity", J. Neurosci., Vol. 27, pp. 13719-13729, 2007. https://doi.org/10.1523/JNEUROSCI.3006-07.2007
  46. D. Sohn, K. Schulze-Osthoff, and U. R. Janike, "Caspase-8 can be activated by interchain proteolysis without receptor-triggered dimerization during drug-induced apoptosis", J. Biol. Chem., Vol. 280, pp. 5267-5273, 2005. https://doi.org/10.1074/jbc.M408585200
  47. H. Su, N. Bidere, L. Zheng, A. Cubre, K. Cubre, K. Sakai, and J. Dale, "Requirement for caspase-8 in NF-kB activation by antigen receptor", Science, Vol. 307, pp. 1465-1468, 2005. https://doi.org/10.1126/science.1104765
  48. T. V. Talanian, C. Quinlan, S. Trautz, M. C. Hackett, J. A. Mankovich, and D. Banach, "Substrate specificity of caspase family proteases", J. Biol. Chem., Vol. 272, pp. 9677-9682, 1997. https://doi.org/10.1074/jbc.272.15.9677
  49. T. Vaisid, N. S. Kosower, A. Katzav, J. Chapman, and S. Barnoy, "Calpastatin levels affect calpain activation and calpain proteolytic activity in APP transgenic mouse model of Alzheimer's disease", Neurochem. Int., Vol. 51, pp. 391-397, 2007. https://doi.org/10.1016/j.neuint.2007.04.004
  50. T. Vaisid, N. S. Kosower, E. Elkind, and S. Barnoy, "Amyloid $\beta$ peptide toxicity in differentiated PC12 cells: calpain-calpastatin, caspase and membrane damage", J. Neurosci. Res., Vol. 86, pp. 2314-2325, 2008a. https://doi.org/10.1002/jnr.21670
  51. T. Vaisid, S. Barnoy, and N. S. Kosower, "Calpastatin overexpression attenuates amyloid- $\beta$-peptide toxicity in differentiated PC12 cells", Neuroscience, Vol. 156, pp. 921-931, 2008b. https://doi.org/10.1016/j.neuroscience.2008.07.072
  52. T. Veeranna, B. Kaji, T. Boland, P. Odrljin, B. S. Mohan, and C. Basavarajappa, "Calpainmediates calcium-induced activation of the Erk1,2 MAPK pathway and cytoskeletal phosphorylation in neurons. Relevance to Alzheimer's Disease", Am. J. Pathol., Vol. 165, pp. 795-805, 2004. https://doi.org/10.1016/S0002-9440(10)63342-1
  53. Y. Verdier, M. Zarandi, and B. Penke, "Amyloid $\beta$-peptide interactions with neuronal and glial cell plasma membrane: binding sites and implications for Alzheimer's disease", J. Peptide. Sci., Vol. 10, pp. 229-248, 2004. https://doi.org/10.1002/psc.573
  54. K. K. W. Wang, R. Posmantur, R. Nadimpalli, R. Nath, P. Mohan, and R. A. Nixon, "Caspase mediated fragmentation of calpain inhibitor protein calpastatin during apoptosis", Arch. Biochem. Biophys., Vol. 356, pp. 187-196, 1998. https://doi.org/10.1006/abbi.1998.0748
  55. A. Wells, A. Huttenlocher, and D. A. Lauffenburger, "Calpain proteases in cell adhesion and motility", Int. Rev. Cytol., Vol. 245, pp. 1-16, 2005. https://doi.org/10.1016/S0074-7696(05)45001-9
  56. M. zhao, D. H. Cribbs, A. J. Anderson, B. J. Cummings, J. H. Su, and A. J. Wasserman, "The induction of the TNFa death domain signaling pathway in Alzheimer's disease brain", Neurochem. Res., Vol. 28, pp. 307-318, 2003. https://doi.org/10.1023/A:1022337519035