• Title/Summary/Keyword: Calorific machine

Search Result 12, Processing Time 0.036 seconds

An experimental study on the dynamic tooth movement of two molar uprighting springs by calorific machine (두 종류의 구치직립 스프링 사용시 저항원 및 근심경사치의 동적인 치아이동 양상에 관한 연구)

  • Chun, Youn-Sic;Row, Joon
    • The korean journal of orthodontics
    • /
    • v.30 no.3 s.80
    • /
    • pp.273-285
    • /
    • 2000
  • The aim of this investigation was to evaluate the differences of two canti-leyer springs by using a new simulation system. This was done using a Calorific machine that compared iron uprighting spring and root uprighting spring. The Calorific machine was designed to allow observation of the whole process of tooth moving, and is composed of three parts(a temperature regulating system, electro-thermodynamic teeth, and an artificial alveolar bone component). The experiment of both mechanics were repeated five times and measured two times. The intra-examiner agreement and inlet-examiner agreement were $96.54\%\;and\;95.73\%$ and these data were statistically tested by paired t-test. The obtained results were as follows. 1. Distal and buccal movement of the anchor teeth were observed greater in the root uprighting spring than the crown uprighting spring. 2. Crown uprighting spring showed distal movement of the crown of lower second molar for 3.29mm but root uprighting spring showed only 1.68mm. 3. Crown uprighting spring exhibited forward movement of mesial and distal root of the lower second molar for 3.91mm, 3.60mm but the root uprighting spring showed 6.76mm, 6.26mm.

  • PDF

AN EXPERIMENTAL STUDY ON THE DYNAMIC 700TH MOVING EFFECTS OF TWO PRECIS10N LINGUAL ARCHS(PLA) FOR CORRECTION OF POSTER10R SCISSOR BITE BY THE CALORIFIC MACHINE (두 종류의 Precision Lingual Arch(PLA)로 구치부 교차교합 치료시 발생할 동적인 치아이동 양상의 차이를 Calorific Machine으로 실험한 연구)

  • Chun, Youn-Sic;Row, Joon;Suh, Moon-Suk;Park, In-Kwon
    • The korean journal of orthodontics
    • /
    • v.28 no.1 s.66
    • /
    • pp.29-41
    • /
    • 1998
  • Despite orthodontic treatment(tooth moving) is dynamic act many orthodontists have used mainly static evaluation method for evaluating effectiveness of the orthodontic appliances. They want to find which is better appliance, especially in the treatment results and treatment period when they chose one appliance from sugessted appliances for obtaining same treatment goal. The author and colleagues invented and manufactured new machine for getting information about the relative effectiveness from many suggested orthodontic appliances and we named it Calorific machine. We used this Calorinc machine to find the relative differences about tooth moving mechanism and tooth moving time between the Burstone's PLA(single force mechanism) and Molar-up's PLA(couple mechanism) for correcting the posterior cross bite. We measured the distance of tooth moving on the occlusal X-ray film and recorded the moving time of the anchored(control elctro-thermal tooth) and lingually tipped lower second molars(experimental electro-thermal tooth) and then processed paired t-est by SAS program. The results were as follows. 1. Molar-up's PLA showed more extrusive and horizontal movement than Burstone's PLA at the lingually tipped molar(p=0.0000). 2. There is no finding of tooth movement by Molar-up's PLA at the uprighted molar(p=o.3475) but Burstone's PLA showed a little change(0.2 m) at the same molar(p=0.0001). 3. Burstone's PLA took 17.8 minutes for tooth moving but Molar-up's PLA took only 3.8 minutes(p=0.0001)

  • PDF

Three dimensional analysis of tooth movement using different types of maxillary molar distalization appliances (간접골성 고정원을 이용한 상악 구치부 원심이동 장치 종류에 따른 치아 이동 양상 평가)

  • Kim, Su-Jin;Chun, Youn-Sic;Jung, Sang-Hyuk;Park, Sun-Hyung
    • The korean journal of orthodontics
    • /
    • v.38 no.6
    • /
    • pp.376-387
    • /
    • 2008
  • Objective: The purpose of this study was to compare the three dimensional changes of tooth movement using four different types of maxillary molar distalization appliances; pendulum appliance (PD), mini-implant supported pendulum appliance (MPD), stainless steel open coil spring (SP) and mini-implant supported stainless steel open coil spring (MSP). Methods: These experiments were performed using the Calorific $machine^{(R)}$ which can simulate dynamic tooth movement. Computed tomography (CT) images of the experimental model were taken before and after tooth movement in 1 mm thicknesses and reconstructed into a three dimensional model using V-works $4.0^{TM}$. These reconstructed images were superimposed using Rapidform $2004^{TM}$ and the direction and amount of tooth movement were measured. Results: The mean reciprocal anchor loss ratio at the first premolar was 17 - 19% for the PD and SP groups. The appliances using mini-implants (MPD or MSP) resulted in less anchorage loss (7 - 8%). On application of a pendulum appliance or MPD, distalization was obtained by tipping rather than by bodily movement. Furthermore, the maxillary second molar tipped distally and bucally. But on application of MSP, distalization was achieved almost by bodily movement. Conclusions: Regarding tooth movement patterns during molar distalization, stainless steel open coil spring with indirect skeletal anchorage was relatively superior to other methods.

An experimental study on the dynamic teeth movement of 3 types of the insertion method of Precision-TPA for derotating the posterior teeth (Precision-TPA를 이용한 구치부 회전시 근심 및 원심삽입법에 따른 동적인 치아이동 양상에 관한 실험 연구)

  • Yang, Sung-Jae;Jung, Seong-Gweon;Row, Joon;Chun, Youn-Sic
    • The korean journal of orthodontics
    • /
    • v.29 no.4 s.75
    • /
    • pp.425-433
    • /
    • 1999
  • Dr. Youn-Sic Chun and coworkers invented the new machine for getting information about the relative effectiveness of the orthodontic appliances and we named it Calorific machine. The author and colleagues used this machine to compare with tooth moving mechanism by 3 types of the insertion method of precision-TPA for derotating the posterior teeth. We measured the distance of tooth movement and found out the rotational center on the occlusal X-ray film and the tooth movement on the occlusogram and then processed paired t-test by SAS program, The results were as follows : 1. In the intermolar width, the mesial insertion method showed the loss oi distance, and the other methods(-distal insertion method, mesial expansion method-) showed the increase of distance. 2. In the arch length, the distal insertion method was exhibited as most recommandable way for increasing the arch length .3. The rotation center of the mesial insertion method for derotating the molar, was located between mesial pit and central pit of the lower End molar. And, in the distal insertion method, it was located between distal pit and distolingual cusp, and in the mesial expansion method was located at distal pit.

  • PDF

Torrefaction Effect on the Grindability Properties of Several Torrefied Biomasses

  • Setyawan, Daru;Yoo, Jiho;Kim, Sangdo;Choi, Hokyung;Rhim, Youngjoon;Lim, Jeonghwan;Lee, Sihyun;Chun, Dong Hyuk
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.547-554
    • /
    • 2018
  • Torrefaction is the promising process of pretreating biomass materials to increase the quality of their energy, especially to upgrade the materials' grindability so that it is suitable for a commercial pulverizer machine. In this study, torrefaction of oak, bamboo, oil palm trunk, and rice husk was carried out under different torrefaction temperatures ($300^{\circ}C$, $330^{\circ}C$, and $350^{\circ}C$) and different torrefaction residence times (30, 45, and 60 minutes). Complete characterization of the torrefied biomass, including proximate analysis, calorific value, thermogravimetric analysis, mass yield, energy yield, and grindability properties (Hardgrove Grindability Index) was carried out. Increasing the torrefaction temperature and residence time significantly improved the calorific value, energy density (by reducing the product mass), and grindability of the product. Furthermore, for commercial purposes, the torrefaction conditions that produced the desired grindability properties of the torrefied product were $330^{\circ}C-30minutes$ and $300^{\circ}-45minutes$, and the latter condition produced a higher energy yield for bamboo, oil palm trunk, and rice husk; however, torrefaction of oak did not achieve the targeted grindability property values.

Spatial changes of the maxillary molar following unilateral derotation with the precision TPA (Precision TPA로 회전된 편측 구치 치료시 공간변화에 대한 연구)

  • Kim, You-Sun;Yeh, Seong-Pil;Kang, Dae-Woon;Chun, Youn-Sic;Row, Joon
    • The korean journal of orthodontics
    • /
    • v.34 no.3 s.104
    • /
    • pp.219-227
    • /
    • 2004
  • The purpose of this study was to evaluate the spatial changes of mesial-in rotated maxillary molar and opposite anchor tooth during derotation by the precision transpalatal arch (TPA) with the use of a new typodont simulation system, the Calorific machine system, which was designed to observe the whole process of tooth movement. The maxillary right first molar was used for the anchor tooth and the maxillary left first molar was used for the mesial-in rotated tooth, and the angle of rotation was increased to 20,40, and 60. A passive precision TPA was fabricated and then activated by bending the left arm to 20, 40, and 60. Each experiment was repeated five times under the same conditions and analyzed by ANOVA and Tucky's Studentized Range (HSD) test. In the occlusal plane, when the bending angle of precision TPA was increased, the mesiobuccal cusp of the rotated molar moved more buccally (p<0.001) and less distally (p<0.001) while the distolingual cusp moved in the mesiopalatal direction. In the sagittal plane, the palatal roots of the derotated molar moved mesially (p<0.001). In the traverse plane, the derotated molar showed slight extrusion (p<0.001). The upper right first molar, which was used as an anchor tooth, showed clinically insignificant movement across all three planes.

Spatial changes of the upper dentition following en-masse space closure: A comparison between first and second premolar extraction (En-masse 견인에 의한 발치공간 폐쇄 후 상악치열의 이동양상 -제1소구치 및 제2소구치 발치 비교)

  • Kim, Hui-Jung;Chun, Youn-Sic;Jung, Sang-Hyuk
    • The korean journal of orthodontics
    • /
    • v.35 no.5 s.112
    • /
    • pp.371-380
    • /
    • 2005
  • The purpose of this experimental study was to evaluate aㅜd compare maxillary arch dimensional and positional changes between first and second premolar extraction groups. The Calorific Machine was used to illustrate tooth movement in three dimensions. The experimental teeth except the first or second premolars were embedded in artifical alveolar bone. The extraction space was closed using arch wires with bull loops into which 15 degree gable bends were placed. Before and after space closure, radiographs were taken in the sagittal and occlusal directions using occlusal films. The results showed greater mean maxillary incisor retraction and less anchorage loss in the maxillary first premolar extraction group than in the maxillary second premolar extraction group. Mesiopalatal rotation of anchor teeth was greater after extraction of a maxillary second premolar than a maxillary first premolar (P<.001).

A Study on the Optimum Design of Power Vice-Strengthening Device (파워바이스 증력장치 최적설계에 관한 연구)

  • Lee, Gyung-Il;Jung, Yoon-soo;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.69-74
    • /
    • 2017
  • In the current machining industry, machining precision is necessary and machining is being carried out. In this ultra-precision machining industry, the fixation of the workpiece is very important and the degree of machining depends on the degree of fixation of the workpiece. In ultra-precision machining, various methods, such as using a vise chuck or the like and using bolt nut coupling, are used for fixing a workpiece to an existing machine tool. In particular, when the precision gripping force of the jig is insufficient during machining of the ultra-precision mold parts, the machining material shakes due to the vibration or friction, and the machining precision is lowered. In the ultra-precision machining of power transmission parts, such as gears, the accuracy of the product is then determined. In addition, the amount of heat generated during machining has a significant effect on the machining accuracy. This is because the vibration value changes according to the grasp force of the jig that fixes the workpiece, and the change in the calorific value due to the change in the main shaft rotation speed of the ultra-precision machining. The increase in the spindle rotation speed during machining decreased the heat generation during machining, and the machining accuracy was also good, and it was confirmed that the machining heat changed according to the fixed state of the workpiece and the machining accuracy also changed. In this study, we try to optimize the driving part of the power vise by using structural analysis, rather than the power vise, using the basic mechanical-type power unit.

Effects of bracket slot size during en-masse retraction of the six maxillary anterior teeth using an induction-heating typodont simulation system

  • Kim, Ji-Yong;Yu, Won-Jae;Koteswaracc, Prasad N.K.;Kyung, Hee-Moon
    • The korean journal of orthodontics
    • /
    • v.47 no.3
    • /
    • pp.158-166
    • /
    • 2017
  • Objective: To investigate how bracket slot size affects the direction of maxillary anterior tooth movement when en-masse retraction is performed in sliding mechanics using an induction-heating typodont simulation system. Methods: An induction-heating typodont simulation system was designed based on the Calorific Machine system. The typodont included metal anterior and resin posterior teeth embedded in a sticky wax arch. Three bracket slot groups (0.018, 0.020, and 0.022 inch [in]) were tested. A retraction force of 250 g was applied in the posterior-superior direction. Results: In the anteroposterior direction, the cusp tip of the canine in the 0.020-in slot group moved more distally than in the 0.018-in slot group. In the vertical direction, all six anterior teeth were intruded in the 0.018-in slot group and extruded in the 0.020- and 0.022-in slot groups. The lateral incisor was significantly extruded in the 0.020- and 0.022-in slot groups. Significant differences in the crown linguoversion were found between the 0.018- and 0.020-in slot groups and 0.018- and 0.022-in slot groups for the central incisor and between the 0.018- and 0.022-in slot groups and 0.020- and 0.022-in slot groups for the canine. In the 0.018-in slot group, all anterior teeth showed crown mesial angulation. Significant differences were found between the 0.018- and 0.022-in slot groups for the lateral incisor and between the 0.018- and 0.020-in slot groups and 0.018- and 0.022-in slot groups for the canine. Conclusions: Use of 0.018-in slot brackets was effective for preventing extrusion and crown linguoversion of anterior teeth in sliding mechanics.