Spatial changes of the maxillary molar following unilateral derotation with the precision TPA

Precision TPA로 회전된 편측 구치 치료시 공간변화에 대한 연구

  • Kim, You-Sun (Department of Orthodontics, Medical College, Ewha Womans University) ;
  • Yeh, Seong-Pil (Department of Orthodontics, Medical College, Ewha Womans University) ;
  • Kang, Dae-Woon (Department of Orthodontics, Medical College, Ewha Womans University) ;
  • Chun, Youn-Sic (Department of Orthodontics, Medical College, Ewha Womans University) ;
  • Row, Joon (Department of Orthodontics, Medical College, Ewha Womans University)
  • 김유선 (이화여자대학교 의과대학 치과학교실 교정과) ;
  • 예성필 (이화여자대학교 의과대학 치과학교실 교정과) ;
  • 강대운 (이화여자대학교 의과대학 치과학교실 교정과) ;
  • 전윤식 (이화여자대학교 의과대학 치과학교실 교정과) ;
  • 노준 (이화여자대학교 의과대학 치과학교실 교정과)
  • Published : 2004.06.01

Abstract

The purpose of this study was to evaluate the spatial changes of mesial-in rotated maxillary molar and opposite anchor tooth during derotation by the precision transpalatal arch (TPA) with the use of a new typodont simulation system, the Calorific machine system, which was designed to observe the whole process of tooth movement. The maxillary right first molar was used for the anchor tooth and the maxillary left first molar was used for the mesial-in rotated tooth, and the angle of rotation was increased to 20,40, and 60. A passive precision TPA was fabricated and then activated by bending the left arm to 20, 40, and 60. Each experiment was repeated five times under the same conditions and analyzed by ANOVA and Tucky's Studentized Range (HSD) test. In the occlusal plane, when the bending angle of precision TPA was increased, the mesiobuccal cusp of the rotated molar moved more buccally (p<0.001) and less distally (p<0.001) while the distolingual cusp moved in the mesiopalatal direction. In the sagittal plane, the palatal roots of the derotated molar moved mesially (p<0.001). In the traverse plane, the derotated molar showed slight extrusion (p<0.001). The upper right first molar, which was used as an anchor tooth, showed clinically insignificant movement across all three planes.

본 연구의 목적은 치아의 이동양상을 관찰하기 위해 고안된 Calorific machine system(typodont simulation system)과 precision TPA를 이용하여, 근심 회전된 (mesial-in rotation) 상악 대구치를 회전 (derotation)시킨 후 해당 치아 및 반대측 고정 원의 공간변화를 확인하기 위함이다. 우측 상악 제 1대구치를 고정원으로 사용하였고 좌측 상악 제 1대구치를 근심 회전된 치아로 사용하였으며, TPA에 부여한 회전각은 $20^{\circ},\;40^{\circ},\;60^{\circ}$였다. 먼저 수동형의 precision TPA를 제작한 후, TPA의 왼쪽 삽입부위(tag)를 각각 $20^{\circ},\;40^{\circ},\;60^{\circ}$로 구부려 실험하였다. 각 군별 실험은 동일한 조건에서 5회 반복한 후 ANOVA와 Tucky's Studentized Range (HSD) test로 검정 하였다. 실험 결과, 교합면에서는 precision TPA의 구부리는 각도가 증가할수록 회전된 구치의 원심 설측 교두가 근심 설측 방향으로 움직이는 동안, 근심 협측 교두는 협측으로 더 많이 움직였고(p<0.001) 원심방향으로는 더 적게 움직였다. (p<0.001) 시상면에서 회전 구치의 구개측 치근은 더욱 근심으로 움직였다. (p<0.001) 횡단면에서는 회전된 치아가 약간의 정출을 보였다(p<0.001). 고정원으로 사용된 우측 상악 제1대구치는 세 평면에서 의미 있는 변화를 보이지 않았다.

Keywords

References

  1. Friel S. Determination of the angle of rotation of the upper first molar to the median raphe of the palate in different types of malocclusion. Dental Practit 1959: 9: 77-79
  2. Ricketts RM. Occlusion-the medium of dentistry. J Prosthet Dent 1969 : 21 : 39-60
  3. Cetlin NM, Ten Hoeve A. Non-extraction treatment. J Clin Orthod 1983 : 17: 396-413
  4. Rhee IN, Chun YS, Row J. A comparison between friction and frictionless mechanics with a new typodont simulation system. Am J Orthod Dentofac Orthop. 2001 :.119: 292-9
  5. Almeida MA, Phillips C, Kula K, Tulloch C. Stability of the palatal rugae as landmarks for analysis of dental casts. Angle Orthod. 1995: 65 : 43-8
  6. McNamara JA Jr, Brudon WL. Orthodontic and Orthopedic treatment in the mixed dentition. Needham Press. Am Arbor 1993 : 181
  7. Lamons F, Holmes C. The problem of the rotated maxillary first permanent molar. Am J Orthod. 1961 : 47 : 266-72
  8. Dahlquist A, Gebauer U, Ingervall B, The effect of a transpalatal arch for the correction of first molar rotation. Europ J Orthod 1996: 18 : 257-267
  9. McDonald JL, Shofer FS, Ghafari J. Effects of molar rotation on arch length. Clin Orthod Res. 2001 : 4 : 79-85
  10. Henry RG. Relationship of the maxillary first permanent molar in normal occlusion and malocclusion. Am J Orthod 1956 : 42 : 288-306
  11. Burstone CJ, Koenig HA. Precision adjustment of thetranspalatal lingual arch: Computer arch form determination. Am J Orthod 1981 : 79 : 115-133
  12. Robellato J. Two couple orthodontic appliance system: transpalatal arches. Sem in Orthod 1995 : 1 : 44-54
  13. Bailey DR. Rotated maxillary molars and their contribution to crowding and malocclusion. J Gen Orthod 1991 : 2 : 26-27
  14. Ingervall B, Honigl KD, Bantleon HP. Moments and forces delivered by transpalatal arches for symmetrical first molar rotation. Europ J Orthod 1996 : 18 : 131 -139
  15. Braun S, Kusnoto B, Evans CA. The effect of maxillary first molar derotation on arch length. Am J Orthod Dentofac Orthod 1997 : 112 : 538-44
  16. Chun YS, Row J, Suh MS, Park IK. An experimental study on the dynamic tooth moving effects of two precision lingual arches (PLA) for correction of posterior scissor bitebythe calorific machine. KoreaJ Orthod 1998: 28: 29-41
  17. Chun YS, Row J, Yang SJ, Jung SG. Anexperimental study on the dynamic teeth movement of 3 types of the insertion method of Precision-TPA for derotating the posterior teeth. Korea J Orthod 1999 : 29 : 425-433
  18. Chun YS, Row J. An experimental study on the dynamic tooth movement of two molar uprighting springs by calorific machine. Korea J Orthod 2000: 30 : 273-285
  19. Andrews LF, The six keys to normal occlusion. Am J Orthod 1972 : 62 : 296-309
  20. Wheeler RC. Dental anatomy, physiology and occlusion, 5th ed.,Philadelphia, WB Saunders Company 1974 : 172-298
  21. Ten Hoeve A. Palatal bar and lip bumper in non-extraction treatment. J Clin Orthod 1985 : 19 : 272-291
  22. Burstone CJ. Precision Lingual arches, Active applications, J Clin Orthod 1989 : 23 : 101-109
  23. Melsen B, Bonetti G, Giunta D, Statically determinate trans palatal arches, J Clin Orthod 1994 : 28 : 602-606
  24. Ogura M, Yamagata K, Kubota S et al. Cornparision of tooth movements using friction-free and preadjusted edgewise bracket systems, J Clin Orthod 1996 : 30 : 325-330
  25. Burstone CJ, Goldberg AJ, Beta-titanium: A new orthodontic alloy, Am J Orthod 1980 : 77 : 121-132