• Title/Summary/Keyword: Calibration plot

Search Result 55, Processing Time 0.03 seconds

Review and Suggestions of Models for Measurement System Analysis (측정 시스템 분석 모형의 고찰 및 새로운 모형의 제안)

  • Choi, Sung-Woon
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.1
    • /
    • pp.191-195
    • /
    • 2008
  • The present study contributes reviewing and suggesting various models for measurement system analysis (MSA). Measurement errors consist of accuracy, linearity, stability, part precision, repeatability and reproducibility (R&R). First, the major content presents split-plot design, and the combination method of crossed and nested design for obtaining gage R&R. Second, we propose $\bar{x}-s$ variable control chart for calculating the gage R&R and number of distinct category. Lastly, investigating the determination of gage performance curve which establishes the control specification propagating calibration uncertainties and measurement errors is described.

A Development of Auto-Calibration for Initial Soil Condition in K-DRUM Model (K-DRUM 개선을 위한 초기토양함수 자동보정기법 개발)

  • Park, Jin-Hyeog;Hur, Young-Teck
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.2
    • /
    • pp.71-79
    • /
    • 2009
  • In this study, a distributed rainfall-runoff model, K-DRUM, based on physical kinematic wave was developed to simulate temporal and spatial distribution of flood discharge considering grid rainfall and grid based GIS hydrological parameters. The developed model can simulate temporal and spatial distribution of surface flow and sub-surface flow during flood period, and input parameters of ASCII format as pre-process can be extracted using ArcView. Output results of ASCII format as post-process can be created to express distribution of discharge in the watershed using GIS and express discharge as animation using TecPlot. an auto calibration method for initial soil moisture conditions that have an effect on discharge in the physics based K-DRUM was additionally developed. The baseflow for Namgang Dam Watershed was analysed to review the applicability of the developed auto calibration method. The accuracy of discharge analysis for application of the method was evaluated using RMSE and NRMSE. Problems in running time and inaccuracy setting using the existing trial and error method were solved by applying an auto calibration method in setting initial soil moisture conditions of K-DRUM.

  • PDF

Analysis of stage III proximal colon cancer using the Cox proportional hazards model (Cox 비례위험모형을 이용한 우측 대장암 3기 자료 분석)

  • Lee, Taeseob;Lee, Minjung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.349-359
    • /
    • 2017
  • In this paper, we conducted survival analyses by fitting the Cox proportional hazards model to stage III proximal colon cancer data obtained from the Surveillance, Epidemiology, and End Results program of the National Cancer Institute. We investigated the effect of covariates on the hazard function for death from proximal colon cancer in stage III with surgery performed and estimated the survival probability for a patient with specific covariates. We showed that the proportional hazards assumption is satisfied for covariates that were used to analyses, using a test based on the Schoenfeld residuals and plots of the Schoenfeld residuals and $log[-log\{{\hat{S}}(t)\}]$. We evaluated the model calibration and discriminatory accuracy by calibration plot and time-dependent area under the ROC curve, which were calculated using 10-fold cross validation.

Comparison of nomogram construction methods using chronic obstructive pulmonary disease (만성 폐쇄성 폐질환을 이용한 노모그램 구축과 비교)

  • Seo, Ju-Hyun;Lee, Jea-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.3
    • /
    • pp.329-342
    • /
    • 2018
  • Nomogram is a statistical tool that visualizes the risk factors of the disease and then helps to understand the untrained people. This study used risk factors of chronic obstructive pulmonary disease (COPD) and compared with logistic regression model and naïve Bayesian classifier model. Data were analyzed using the Korean National Health and Nutrition Examination Survey 6th (2013-2015). First, we used 6 risk factors about COPD. We constructed nomogram using logistic regression model and naïve Bayesian classifier model. We also compared the nomograms constructed using the two methods to find out which method is more appropriate. The receiver operating characteristic curve and the calibration plot were used to verify each nomograms.

A novel nomogram of naïve Bayesian model for prevalence of cardiovascular disease

  • Kang, Eun Jin;Kim, Hyun Ji;Lee, Jea Young
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.3
    • /
    • pp.297-306
    • /
    • 2018
  • Cardiovascular disease (CVD) is the leading cause of death worldwide and has a high mortality rate after onset; therefore, the CVD management requires the development of treatment plans and the prediction of prevalence rates. In our study, age, income, education level, marriage status, diabetes, and obesity were identified as risk factors for CVD. Using these 6 factors, we proposed a nomogram based on a $na{\ddot{i}}ve$ Bayesian classifier model for CVD. The attributes for each factor were assigned point values between -100 and 100 by Bayes' theorem, and the negative or positive attributes for CVD were represented to the values. Additionally, the prevalence rate can be calculated even in cases with some missing attribute values. A receiver operation characteristic (ROC) curve and calibration plot verified the nomogram. Consequently, when the attribute values for these risk factors are known, the prevalence rate for CVD can be predicted using the proposed nomogram based on a $na{\ddot{i}}ve$ Bayesian classifier model.

Identification of risk factors and development of the nomogram for delirium

  • Shin, Min-Seok;Jang, Ji-Eun;Lee, Jea-Young
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.4
    • /
    • pp.339-350
    • /
    • 2021
  • In medical research, the risk factors associated with human diseases need to be identified to predict the incidence rate and determine the treatment plan. Logistic regression analysis is primarily used in order to select risk factors. However, individuals who are unfamiliar with statistics outcomes have trouble using these methods. In this study, we develop a nomogram that graphically represents the numerical association between the disease and risk factors in order to identify the risk factors for delirium and to interpret and use the results more effectively. By using the logistic regression model, we identify risk factors related to delirium, construct a nomogram and predict incidence rates. Additionally, we verify the developed nomogram using a receiver operation characteristics (ROC) curve and calibration plot. Nursing home, stroke/epilepsy, metabolic abnormality, hemodynamic instability, and analgesics were selected as risk factors. The validation results of the nomogram, built with the factors of training set and the test set of the AUC showed a statistically significant determination of 0.893 and 0.717, respectively. As a result of drawing the calibration plot, the coefficient of determination was 0.820. By using the nomogram developed in this paper, health professionals can easily predict the incidence rate of delirium for individual patients. Based on this information, the nomogram could be used as a useful tool to establish an individual's treatment plan.

APPLICATION STUDY OF CHEMOINFOMETRICAL NEAR-INFRARED SPECTROSCOPY IN PHARMACEUTICAL INDUSTRY

  • Otsuka, Makoto;Kato, Fumie;Matsuda, Yoshihisa
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.2111-2111
    • /
    • 2001
  • A chemoinfometrical method for evaluating the quantitative determination of crystallinity one polymorphs based on fourie-transformed near-infrared (FT-NIR) spectroscopy was established. A direct comparison of the data with the ones collected from using the and compared with the conventional powder X-ray diffraction method was performed. [Method] The pPure a and g forms of indomethacin (IMC) were prepared by reportedusing published methods. Six kinds of standard samples obtained by physically mixing of a and g forms. After the powder X-ray diffraction profiles of samples have been measured, the intensity values were normalized to against the intensity of silicon powder as the as an external standard. The calibration curves for quantification of crystal content were based upon the total relative intensity of four diffraction peaks from of the form g crystal. FT-NIR spectra of six calibration sample sets were recorded 5 times with the NIR spectrometer (BRAN+LUEBBE). Chemoinfometric analysis was performed on the NIR spectral data sets by applying the principal component regression (PCR). [Results] The relation between the actual and predicted polymorphic contents of form g IMC measured using by the X-ray diffraction method shows a good straight linen linear relation., and it has slope of 0.023, an intercept of 0.131 and a correlation coefficient of 0.986. PCR analyses wereis was performed based on normalized NIR spectra sets offer standard samples of known content of IMC g form. IMC. A calibration equation was determined to minimize the root mean square error of the predictionthe prediction. Figure 1 shows a plot of the calibration data obtained by NIR method between the actual and predicted contents of form g IMC. The predicted values were reproducible and had a smaller standard deviation. Figure 2 shows that the plot for the predicted transformation rate (%) of form a IMC to form g as measured by X-ray diffractomeoy against to those as measured by NIR method. The plot has a slope of 1.296, an intercept of 1,109, and a correlation coefficient of 0.992. The line represents a satisfactory correlation between the two predicted values of form g IMC content. Thus NIR spectroscopy is an effective method for the evaluation to the pharmaceutical products of quantitative of polymorph.

  • PDF

Digital Calibration Technique for Cyclic ADC based on Digital-Domain Averaging of A/D Transfer Functions (아날로그-디지털 전달함수 평균화기법 기반의 Cyclic ADC의 디지털 보정 기법)

  • Um, Ji-Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.6
    • /
    • pp.30-39
    • /
    • 2017
  • A digital calibration technique based on digital-domain averaging for cyclic ADC is proposed. The proposed calibration compensates for nonlinearity of ADC due to capacitance mismatch of capacitors in 1.5-bit/stage MDAC. A 1.5-bit/stage MDAC with non-matched capacitors has symmetric residue plots with respect to the ideal residue plot. This intrinsic characteristic of residue plot of MDAC is reflected as symmetric A/D transfer functions. A corrected A/D transfer function can be acquired by averaging two transfer functions with non-linearity, which are symmetric with respect to the ideal analog-digital transfer function. In order to implement the aforementioned averaging operation of analog-digital transfer functions, a 12-bit cyclic ADC of this work defines two operational modes of 1.5-bit/stage MDAC. By operating MDAC as the first operational mode, the cyclic ADC acquires 12.5-bits output code with nonlinearity. For the same sampled input analog voltage, the cyclic ADC acquires another 12.5-bits output code with nonlinearity by operating MDAC as the second operational mode. Since analog-digital transfer functions from each of operational mode of 1.5-bits/stage MDAC are symmetric with respect to the ideal analog-digital transfer function, a corrected 12-bits output code can be acquired by averaging two non-ideal 12.5-bits codes. The proposed digital calibration and 12-bit cyclic ADC are implemented by using a $0.18-{\mu}m$ CMOS process in the form of full custom. The measured SNDR(ENOB) and SFDR are 65.3dB (10.6bits) and 71.7dB, respectively. INL and DNL are measured to be -0.30/-0.33LSB and -0.63/+0.56LSB, respectively.

Evaluation of Modeling Approach for Suspended Sediment Yield Reduction by Surface Cover Material using Rice Straw at Upland Field (모델링 기법을 이용한 밭의 볏짚 지표피복의 부유사량 저감효과 평가 방법)

  • Park, Youn Shik;Kum, Donghyuk;Lee, Dong Jun;Choi, Joongdae;Lim, Kyoung Jae;Kim, Ki-sung
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.1
    • /
    • pp.108-114
    • /
    • 2016
  • Sediment-laden water leads to water quality degradation in streams; therefore, best management practices must be implemented in the source area to control nonpoint source pollution. Field monitoring was implemented to measure precipitation, direct runoff, and sediment concentrations at a control plot and straw-applied plot to examine the effect on sediment reduction in this study. A hydrology model, which employs Curve Number (CN) to estimate direct runoff and the Universal Soil Loss Equation to estimate soil loss, was selected. Twenty-five storm events from October 2010 to July 2012 were observed at the control plot, and 14 storm events from April 2011 to July 2011 at the straw-applied plot. CN was calibrated for direct runoff, and the Nash-Sutcliffe efficiency and coefficient of determination were 0.66 and 0.68 at the control plot. Direct runoff at the straw-applied plot was calibrated using the percentage direct runoff reduction. The estimated reduction in sediment load by direct runoff reduction calibration alone was acceptable. Therefore, direct runoff-sediment load behaviors in a hydrology model should be considered to estimate sediment load and the reduction thereof.

Modal Parameter Estimation of Membrane for Standard Microphone Sensitivity Calibration (표준 마이크로폰 감도 교정을 위한 진동막의 모달 파라미터 측정)

  • 권휴상;서상준;서재갑;박준홍
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.298-302
    • /
    • 2002
  • Equivalent volume estimation of the coupler and two coupled microphones has a key role in standard microphone pressure calibration. The equivalent volume of the microphone is determined by the dynamic characteristics of the diaphragm system and front cavity. Therefore the modal parameters of diaphragm system - natural frequency and damping fatter - should be measured explicitly for the estimation of the equivalent volume. The diaphragm system is composed of the vibrating diaphragm, back slit behind diaphragm, pressure equalization vent, and front cavity which are acoustically coupled. In the measurement, the electrostatic actuator was used to excite the system with the swept sine, and the frequency response was obtained. The close actuator in front of the diaphragm must influence the radiation impedance of the system, and then the modal parameters. From the measured frequency response, the natural frequency and the damping factor could be estimated with the Complex exponential method based on the Prony model and the zero crossing real and imaginary plot.

  • PDF