• Title/Summary/Keyword: Calibration Correction

Search Result 368, Processing Time 0.029 seconds

The Off-Axis Properties of Solar X-Ray Telescopes: I. Evaluation of the Vignetting Effect

  • Shin, Jun-Ho;Sakurai, Takashi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.35.1-35.1
    • /
    • 2011
  • The solar X-ray telescopes, the Yohkoh SXT and the Hinode XRT, have observed for a couple of decades a variety of coronal structures in the range of wide field-of-view (FOV) covering the full solar disk. It has been emphasized that the optical structure of solar telescopes should be designed with care for improving the uniformity over the full FOV. The vignetting effect is one of the important optical characteristics for describing the performance of a telescope, which reflects the ability of collecting the incoming light at different locations and different photon energies. The correction of this vignetting effect would be an important calibration step that should be performed in advance, especially when the observed images are to be used for photometric purposes. Since the vignetting effect of solar X-ray telescopes shows wavelength dependence, a special care should be taken when, for example, performing the temperature analyses with thin and thick filters for flaring activities observed at the periphery of the full FOV. The results of analysis of pre-launch calibration data for the evaluation of vignetting effect will be introduced in detail.

  • PDF

Enhancing Harmful Animal Recognition At Night Through Image Calibration (이미지 보정을 통한 야간의 유해 동물 인식률 향상)

  • Ha, Yeongseo;Shim, Jaechang;Kim, Joongsoo
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.10
    • /
    • pp.1311-1318
    • /
    • 2021
  • Agriculture is being damaged by harmful animals such as wild boars and water deer. It need to get permission to catch a wild boar and farmers are using a lot of methods to chase harmful animals. The methods through deep learning and image processing capture harmful animals with cameras. It is difficult to analyze harmful animals that are active at night. In this case, In this case, using deep learning by image correction can achieve a higher recognition rate.

An Iterative MUSIC-Based DOA Estimation System Using Antenna Direction Control for GNSS Interference

  • Seo, Seungwoo;Park, Youngbum;Song, Kiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.4
    • /
    • pp.367-378
    • /
    • 2020
  • This paper introduces the development of the iterative multiple signal classification (MUSIC)-based direction-of-arrival (DOA) estimation system using a rotator that can control the direction of antenna for the global navigation satellite system (GNSS) interference. The system calculates the spatial spectrum according to the noise eigenvector of all dimensions to measure the number of signals (NOS). Also, to detect the false peak, the system adjusts the array antenna's direction and checks the change's peak angles. The phase delay and gain correction values for system calibration are calculated in consideration of the chamber's structure and the characteristics of radio waves. The developed system estimated DOAs of interferences located about 1km away. The field test results show that the developed system can estimate the DOA without NOS information and detect the false peak even though the inter-element spacing is longer than the half-wavelength of the interference.

A Study on the development and calibration method of a modular internal resistance meter to improve the safety of reusable batteries

  • Mi-Jin Choi;Sang-Bum Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.228-235
    • /
    • 2024
  • Battery use is increasing worldwide to achieve carbon neutrality and improve energy efficiency, but batteries are a finite resource and their application is determined by capacity and specifications. Battery performance deteriorates as the number of uses increases. A certain level of battery performance degradation has become an issue in the field of reuse and recycling, and various studies are being conducted on reuse to solve power shortages. Waste batteries from electric vehicles are suitable for building ESS based on reusable batteries, and for stable use, technical skills are needed to accurately predict battery life and determine status information. Predicting battery life and determining status information are difficult due to non-linearity due to internal structure or chemical changes. In this paper, we manufactured a modular internal resistance measuring device and compared the measured values with Hioki equipment to minimize the error rate through a correction method. As a result of testing Hioki equipment and modular measuring instruments to ensure efficiency and safety based on reusable batteries, an accuracy of over 95% was confirmed.

Calibration of Frequency Response for a Sampling Oscilloscope (샘플링 오실로스코프의 주파수 응답특성 교정)

  • Cho, Chihyun;Lee, Dong-Joon;Lee, Joo-Gwang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.5
    • /
    • pp.344-352
    • /
    • 2018
  • We herein propose a calibration method for a sampling oscilloscope. The proposed method can correct the systematic errors in the oscilloscope such as time-based distortion and impedance mismatch. In addition, it can accurately estimate the residual jitter that remains after a time-based correction and the scale factor that varies in accordance with the setting of the pulse generator. The proposed method is validated thorough the comparison and verification with the power meter, and the uncertainty of the measurement method is analyzed.

Correction of Secondary ion Mass Spectrometry depth profile distorted by oxygen flooding (Oxygen flooding에 의해 왜곡된 SIMS depth profile의 보정)

  • 이영진;정칠성;윤명노;이순영
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.2
    • /
    • pp.225-233
    • /
    • 2001
  • Distortion of Secondary Ion Mass Spectrometry(SIMS) depth profile, which is usually observed when the analysis is made using oxygen flooding on the surface of Si with oxide on it, has been corrected. The origin of distortion has been attributed to depth calibration error due to sputter rate difference and concentration calibration error due to relative sensitivity factor(RSF) difference between $SiO_2$ and Si layers, In order to correct depth calibration error, artifact in analysis of sodium ion on oxide was used to define the interface in SIMS depth profile and oxide thickness was measured with SEM and XPS. The differences of sputter rate and RSF between two layers have been attributed to volume swelling of Si substrate occurred by oxygen flooding induced oxidation. The corrected SIMS depth profiles showed almost the same results with those obtained without oxygen flooding.

  • PDF

Ship Detection by Satellite Data: Radiometric and Geometric Calibrations of RADARSAT Data (위성 데이터에 의한 선박 탐지: RADARSAT의 대기보정과 기하보정)

  • Yang Chan-Su
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.05b
    • /
    • pp.49-52
    • /
    • 2004
  • RADARSAT is one of many possible data sources that can play an important role in marine surveillance including ship detection because radar sensors have the two primary advantages: all-weather and day or night imaging. However, atmospheric effects on SAR imaging can not be bypassed and any remote sensing image has various geometric distortions. In this study, radiometric and geometric calibrations for RADARSAT/SAR data are tried using SGX products georeferenced as level 1. For radiometric calibration, information on the magnitude of the radar backscatter coefficient of the imaged terrain is extracted from the processed image data. Conversion method of the pixel DNs to beta nought and sigma nought is also investigated Finally, automatic geometric calibration based on the header file is compared to a marine chart.

  • PDF

An 8-b 1GS/s Fractional Folding CMOS Analog-to-Digital Converter with an Arithmetic Digital Encoding Technique

  • Lee, Seongjoo;Lee, Jangwoo;Lee, Mun-Kyo;Nah, Sun-Phil;Song, Minkyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.5
    • /
    • pp.473-481
    • /
    • 2013
  • A fractional folding analog-to-digital converter (ADC) with a novel arithmetic digital encoding technique is discussed. In order to reduce the asymmetry errors of the boundary conditions for the conventional folding ADC, a structure using an odd number of folding blocks and fractional folding rate is proposed. To implement the fractional technique, a new arithmetic digital encoding technique composed of a memory and an adder is described. Further, the coding errors generated by device mismatching and other external factors are minimized, since an iterating offset self-calibration technique is adopted with a digital error correction logic. A prototype 8-bit 1GS/s ADC has been fabricated using an 1.2V 0.13 um 1-poly 6-metal CMOS process. The effective chip area is $2.1mm^2$(ADC core : $1.4mm^2$, calibration engine : $0.7mm^2$), and the power consumption is 88 mW. The measured SNDR is 46.22 dB at the conversion rate of 1 GS/s. Both values of INL and DNL are within 1 LSB.

An Implementation of Efficient Error-reducing Method Using DSP for LED I-V Source and Measurement System (DSP를 이용한 LED I-V 공급 및 측정 시스템에서의 효율적인 오차 감소 기법 구현)

  • Park, Chang Hee;Cho, Sung Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.109-117
    • /
    • 2015
  • In this paper, we proposed error-reducing method to source or measure a current or voltage for LED in the I-V characteristic analysis system using a digital signal processor (DSP). this method has the advantage of reducing a non-linear circuit error and random error. random error can be reduced using recursive averaging technique and non-linear circuit error can be reduced using 2rd polynomial regression calibration parameters fitting with measured sample data. it corrects measured error of IR, VR, VF1, VF2, VF3 of LED using calibration parameters. experimental results show that can be performed with about 0.017~0.043% accuracy.

Development of 1-Dimensional Water Quality Model Automatizing Calibration-Correction and Application in Nakdong River (1차원 수질 예측 모형의 검보정 자동화 시스템 개발 및 낙동강에서의 적용)

  • Son, Ah Long;Han, Kun Yeun;Park, Kyung Ok;Kim, Byung Hyun
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.5
    • /
    • pp.765-777
    • /
    • 2011
  • According to the total pollution load management system, exact prediction and analysis of water quality and discharge has been required in order to allocate the amount of pollution load to each local government. In this study, QUAL2E model was used for comparison with other water quality models and improve the inadequate to forecast future water quality. And Various calibration and verification methods were applied to deal with existing uncertainties of parameter during modeling water quality. For user convenience, A GUI(Graphical User Interface) system named "QL2-XP" model is developed by object-oriented language for the user convenience and practical usage. Suggested GUI system consist of hydraulic analysis, water quality analysis, optimized model calibration processes, and postprocessing the simulation results. Therefore this model will be effectively utilized to manage practical and efficient water quality.