• Title/Summary/Keyword: Calcium signaling

Search Result 244, Processing Time 0.031 seconds

Current status in calcium biofortification of crops (작물의 생합성 칼슘 함량 증대 연구 현황)

  • Lee, Jeong-Yeo;Nou, Ill-Sup;Kim, Hye-Ran
    • Journal of Plant Biotechnology
    • /
    • v.39 no.1
    • /
    • pp.23-32
    • /
    • 2012
  • Calcium is an essential nutrient for living organisms, with key structural and signaling roles. Its deficiency in plants can result in poor biotic and abiotic stress tolerance as well as reduced crop quality and yield. Calcium deficiency in humans causes various diseases such as osteoporosis and rickets. Biofortification of calcium in various food crops has been suggested as an economic and environmentally advantageous method to enhance human intake of calcium. Recent efforts to increase the levels of calcium in food crops have used calcium/proton antiporters ($CAXs$) and modified one to increase calcium transport into vacuoles through genetic engineering. It has been reported that overall calcium content of transgenic plants has been increased in their edible portions with some adverse effects. In conclusion, biofortification of calcium will add more value in crops as well as will be beneficial for animal and human. Therefore, more fundamental studies on the mechanisms of calcium ion storage and transporting are essential for more effective calcium biofortification.

Protein Kinase D1, a New Molecular Player in VEGF Signaling and Angiogenesis

  • Ha, Chang Hoon;Jin, Zheng Gen
    • Molecules and Cells
    • /
    • v.28 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • Vascular endothelial growth factor (VEGF) is essential for many angiogenic processes both in normal and pathological conditions. However, the signaling pathways involved in VEGF-induced angiogenesis are incompletely understood. The protein kinase D1 (PKD1), a newly described calcium/calmodulin-dependent serine/threonine kinase, has been implicated in cell migration, proliferation and membrane trafficking. Increasing evidence suggests critical roles for PKD1-mediated signaling pathways in endothelial cells, particularly in the regulation of VEGF-induced angiogenesis. Recent studies show that class IIa histone deacetylases (HDACs) are PKD1 substrates and VEGF signal-responsive repressors of myocyte enhancer factor-2 (MEF2) transcriptional activation in endothelial cells. This review provides a guide to PKD1 signaling pathways and the direct downstream targets of PKD1 in VEGF signaling, and suggests important functions of PKD1 in angiogenesis.

Calcium Signaling in Salivary Secretion

  • Kim, Jin Man;Lee, Sang-Woo;Park, Kyungpyo
    • Journal of Korean Dental Science
    • /
    • v.10 no.2
    • /
    • pp.45-52
    • /
    • 2017
  • Calcium has versatile roles in diverse physiological functions. Among these functions, intracellular $Ca^{2+}$ plays a key role during the secretion of salivary glands. In this review, we introduce the diverse cellular components involved in the saliva secretion and related dynamic intracellular $Ca^{2+}$ signals. Calcium acts as a critical second messenger for channel activation, protein translocation, and volume regulation, which are essential events for achieving the salivary secretion. In the secretory process, $Ca^{2+}$ activates $K^+$ and $Cl^-$ channels to transport water and electrolyte constituting whole saliva. We also focus on the $Ca^{2+}$ signals from intracellular stores with discussion about detailed molecular mechanism underlying the generation of characteristic $Ca^{2+}$ patterns. In particular, inositol triphosphate signal is a main trigger for inducing $Ca^{2+}$ signals required for the salivary gland functions. The biphasic response of inositol triphosphate receptor and $Ca^{2+}$ pumps generate a self-limiting pattern of $Ca^{2+}$ efflux, resulting in $Ca^{2+}$ oscillations. The regenerative $Ca^{2+}$ oscillations have been detected in salivary gland cells, but the exact mechanism and function of the signals need to be elucidated. In future, we expect that further investigations will be performed toward better understanding of the spatiotemporal role of $Ca^{2+}$ signals in regulating salivary secretion.

Staurosporine Enhances Parathyroid Hormone-Induced Calcium Signal in UMR-106 Osteoblastic Cells

  • Lee, Suk-Kyeong;Paula H. Stern
    • Archives of Pharmacal Research
    • /
    • v.22 no.2
    • /
    • pp.119-123
    • /
    • 1999
  • Parathyroid hormone (PTH) treatment of bone and kidney-derived cells not only activates adenyly cyclase buy also increases intracellular free calcium, and translocates protein kinase C (PKC) from cytosol to plasma membranes. We have found that acute phorbol ester pretreatment significantly decreases PTH-induced calcium transients and the effect of phorbol ester was antagonized by staurosporine (ST). Although the major effect of ST in that study was the reversal of the action of phorbol ester, it appeared that ST may also have promoted the effect of PTH directly. To further investigate the observation, we examined the effect of ST on the intracellular calcium transients induced by PTH and $\alpha$-thrombin ($\alpha$-TH). For calcium transient experiments, UMR-106 cells were loaded with 2 mM fluo-acetoxymethylester for 30 min at room temperature. The cells were then washed and suspended in buffer containing 1 mM calcium. Fluorescence was detected at 530 nm, with excitation at 505 nm. ST alone did not cause calcium transients, but enhanced the transients elicited by PTH response. added 5 min before the hormone. Another protein kinase inhibitor H-7 likewise enhanced the calcium responses elicited by PTH, while genistein did not affect PTH response. Calcium transients elicited by $\alpha$-TH were also enhanced by ST. The results suggest that there might be tonically activated endogenous protein kinase(s) which inhibit calcium signaling of some calcemic agents.

  • PDF

Bone Homeostasis and Gut Microbial-Dependent Signaling Pathways

  • Zhong, Xiaohui;Zhang, Feng;Yin, Xinyao;Cao, Hong;Wang, Xuesong;Liu, Dongsong;Chen, Jing;Chen, Xue
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.6
    • /
    • pp.765-774
    • /
    • 2021
  • Although research on the osteal signaling pathway has progressed, understanding of gut microbial-dependent signaling pathways for metabolic and immune bone homeostasis remains elusive. In recent years, the study of gut microbiota has shed light on our understanding of bone homeostasis. Here, we review microbiota-mediated gut-bone crosstalk via bone morphogenetic protein/SMADs, Wnt and OPG/receptor activator of nuclear factor-kappa B ligand signaling pathways in direct (translocation) and indirect (metabolite) manners. The mechanisms underlying gut microbiota involvement in these signaling pathways are relevant in immune responses, secretion of hormones, fate of osteoblasts and osteoclasts and absorption of calcium. Collectively, we propose a signaling network for maintaining a dynamic homeostasis between the skeletal system and the gut ecosystem. Additionally, the role of gut microbial improvement by dietary intervention in osteal signaling pathways has also been elucidated. This review provides unique resources from the gut microbial perspective for the discovery of new strategies for further improving treatment of bone diseases by increasing the abundance of targeted gut microbiota.

[ ${\alpha}$ ]Synuclein Induces Unfolded Protein Response Via Distinct Signaling Pathway Independent of ER-membrane Kinases

  • Kang, Shin-Jung;Shin, Ki-Soon;Kim Kwon, Yun-Hee
    • Animal cells and systems
    • /
    • v.10 no.3
    • /
    • pp.115-120
    • /
    • 2006
  • Parkinson's disease (PD) is a neurodegenerative disease caused by selective degeneration of dopaminergic neurons in the substantia nigra. Mutations in ${\alpha}$-synuclein have been causally linked to the pathogenesis of hereditary PD. In addition, it is a major component of Lewy body found in the brains of sporadic cases as well. In the present study, we examined whether overexpression of wild type or PD-related mutant ${\alpha}$-synuclein induces unfolded protein response (UPR) and triggers the known signaling pathway of the resulting endoplasmic reticulum (ER) stress in SH-SY5Y cells. Overexpression of wild type, A30P, and A53T ${\alpha}$-synuclein all induced XBP-1 mRNA splicing, one of the late stage UPR events. However, activation of ER membrane kinases and upregulation of ER or cytoplsmic chaperones were not detected when ${\alpha}$-synuclein was overexpressed. However, basal level of cytoplsmic calcium was elevated in ${\alpha}$-synuclein-expressing cells. Our observation suggests that overexpression of ${\alpha}$-synuclein induces UPR independent of the known ER membrane kinase-mediated signaling pathway and induces ER stress by disturbing calcium homeostasis.

Calcium Signaling of Lysophosphatidylethanolamine through LPA1 in Human SH-SY5Y Neuroblastoma Cells

  • Lee, Jung-Min;Park, Soo-Jin;Im, Dong-Soon
    • Biomolecules & Therapeutics
    • /
    • v.25 no.2
    • /
    • pp.194-201
    • /
    • 2017
  • Lysophosphatidylethanolamine (LPE), a lyso-type metabolite of phosphatidylethanolamine, has been reported to be an intercellular signaling molecule. LPE mobilizes intracellular $Ca^{2+}$ through G-protein-coupled receptor (GPCR) in some cells types. However, GPCRs for lysophosphatidic acid (LPA) were not implicated in the LPE-mediated activities in LPA GPCR overexpression systems or in SK-OV3 ovarian cancer cells. In the present study, in human SH-SY5Y neuroblastoma cells, experiments with $LPA_1$ antagonists showed LPE induced intracellular $Ca^{2+}$ increases in an $LPA_1$ GPCR-dependent manner. Furthermore, LPE increased intracellular $Ca^{2+}$ through pertussis-sensitive G proteins, edelfosine-sensitive-phospholipase C, 2-APB-sensitive $IP_3$ receptors, $Ca^{2+}$ release from intracellular $Ca^{2+}$ stores, and subsequent $Ca^{2+}$ influx across plasma membranes, and LPA acted on $LPA_1$ and $LPA_2$ receptors to induce $Ca^{2+}$ response in a 2-APB-sensitive and insensitive manner. These findings suggest novel involvements for LPE and LPA in calcium signaling in human SH-SY5Y neuroblastoma cells.

Current Opinion in Molecular Pathology of Ameloblastoma: A Literature Review

  • Dong‑Joon, Lee;Shujin, Li;Han‑Sung, Jung
    • Journal of Korean Dental Science
    • /
    • v.15 no.2
    • /
    • pp.121-131
    • /
    • 2022
  • Ameloblastoma is the most representative epithelial odontogenic tumor in the craniofacial region. Through several studies on Ameloblastoma that have been conducted so far, we have been able to get closer to the reality of Ameloblastoma. However, groundbreaking insight into the pathophysiology of Ameloblastoma has not yet been provided. This review assessed three aspects of five recently published papers on Ameloblastoma: cancer stem cells, calcium signaling, and tumor microenvironment, and compared them with previous studies on tumor physiology, including cancer. In addition, the characteristics of Ameloblastoma revealed by the experimental methods presented in the currently published five papers provide the possibility of Ameloblastoma as a study model in general tumor or cancer studies. Furthermore, the mechanisms of action of the chemicals identified in the studies support their potential as candidates for the second-line treatment of Ameloblastoma.

Regulation of $Ca^{2+}$ Signaling in Pulmonary Hypertension

  • Firth, Amy L.;Won, Jun Yeon;Park, Won Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Understanding the cellular and molecular mechanisms involved in the development and progression of pulmonary hypertension (PH) remains imperative if we are to successfully improve the quality of life and life span of patients with the disease. A whole plethora of mechanisms are associated with the development and progression of PH. Such complexity makes it difficult to isolate one particular pathway to target clinically. Changes in intracellular free calcium concentration, the most common intracellular second messenger, can have significant impact in defining the pathogenic mechanisms leading to its development and persistence. Signaling pathways leading to the elevation of $[Ca^{2+}]_{cyt}$ contribute to pulmonary vasoconstriction, excessive proliferation of smooth muscle cells and ultimately pulmonary vascular remodeling. This current review serves to summarize the some of the most recent advances in the regulation of calcium during pulmonary hypertension.

Maternal-Conceptus Interactions: Mediators Regulating the Implantation Process in Pigs

  • Choi, Yohan;Seo, Heewon;Yoo, Inkyu;Han, Jisoo;Jang, Hwanhee;Kim, Minjeong;Ka, Hakhyun
    • Reproductive and Developmental Biology
    • /
    • v.38 no.1
    • /
    • pp.9-19
    • /
    • 2014
  • For successful embryo implantation, the communication of the maternal endometrium with the conceptus trophectoderm is required essentially. In pigs, conceptuses undergo morphological change in length to enlarge the physical contact area with the maternal endometrium and secrete estrogen to induce the maternal recognition of pregnancy during the peri-implantation period. Conceptus-derived estrogen prevents luteolysis by conversion in direction of $PGF_{2{\alpha}}$ secretion from the uterine vasculature to the uterine lumen as well as it affects on expression of the uterine endometrial genes. In addition to estrogen, conceptuses release various signaling molecules, including cytokines, growth factors, and proteases, and, in response to these signaling molecules, the maternal uterine endometrium also synthesizes many signaling molecules, including hormones, cytokines, growth factors, lipid molecules, and utilizes ions such as calcium ion by calcium regulatory molecules. These reciprocal interactions of the conceptus trophectoderm with the maternal uterine endometrium make development and successful implantation of embryos possible. Thus, signaling molecules at the maternal-conceptus interface may play an important role in the implantation process. This review summarized syntheses and functions of signaling molecules at the maternal-conceptus interface to further understand mechanisms of the embryo implantation process in pigs.