• Title/Summary/Keyword: Caffeoyl-CoA

Search Result 10, Processing Time 0.032 seconds

Production of Bacterial Quorum Sensing Antagonists, Caffeoyl- and Feruloyl-HSL, by an Artificial Biosynthetic Pathway

  • Kang, Sun-Young;Kim, Bo-Min;Heo, Kyung Taek;Jang, Jae-Hyuk;Kim, Won-Gon;Hong, Young-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.12
    • /
    • pp.2104-2111
    • /
    • 2017
  • A new series comprising phenylacetyl-homoserine lactones (HSLs), caffeoyl-HSL and feruloyl-HSL, was biologically synthesized using an artificial de novo biosynthetic pathway. We developed an Escherichia coli system containing artificial biosynthetic pathways that yield phenylacetyl-HSLs from simple carbon sources. These artificial biosynthetic pathways contained the LuxI-type synthase gene (rpaI) in addition to caffeoyl-CoA and feruloyl-CoA biosynthetic genes, respectively. Finally, the yields for caffeoyl-HSL and feruloyl-HSL were $97.1{\pm}10.3$ and $65.2{\pm}5.7mg/l$, respectively, by tyrosine-overproducing E. coli with a $\text\tiny{L}$-methionine feeding strategy. In a quorum sensing (QS) competition assay, feruloyl-HSL and p-coumaroyl-HSL antagonized the QS receptor TraR in Agrobacterium tumefaciens NT1, whereas caffeoyl-HSL did not.

Analysis of Chalcone Synthase and Flavanone 3-Hydroxylase Activity in Lilium Cultivars (Lilium품종의 Chalcone Synthase와 Flavanone 3-Hydroxylase 효소학적 분석)

  • Yu, Sun-Nam
    • Korean Journal of Breeding Science
    • /
    • v.40 no.4
    • /
    • pp.422-429
    • /
    • 2008
  • In this work, we analyzed the activity of control enzymes of flower color biosynthesis, chalcone synthase (CHS) and flavanone 3-hydroxylase (FHT) using biochemical and enzymological methods in Lilium longiflorum and 11 Lilium cultivars. The results obtained are as follows ; Naringenin (NAR) was synthesized in all Lilium cultivars tested by the catalytic activity of CHS which used malonyl-CoA and 4-coumaryol-CoA as substrates. Substrate-specific activity of CHS was observed because eridictiol (ERI), which uses caffeoyl-CoA as a substrate, was not detected in tested cultivars. In next step, dihydroflavone product was synthesized by FHT using flavanones as a substrate. FHT synthesized dihydrokaempferol (DHK) by using NAR as substrates. A remarkable activity of FHT was observed in other 11 cultivars.

Development of transgenic disease-resistance root stock for growth of watermelon.(oral)

  • S.M. Cho;Kim, J.Y.;J.E. Jung;S.J. Mun;S.J. Jung;Kim, K.S.;Kim, Y.C.;B.H. Cho
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.65.2-65
    • /
    • 2003
  • To protect the plant against several soil-borne pathogens, we are currently constructing disease-resistant transgenic root stock for the growth of cucurbitaceae vegetable plants, watermelon and gourd. We made a watermelon cDNA library from Cladosporium cucumerinum-Infected leaves for substractive hybriazation and differential screening. We isolated the several pathogen inducible cDNA clones, such as caffeoyl-CoA-methyltransferase, LAA induced protein, receptor-like kinase homolog, hydroxyproline-rich glycoprotein, catalase, calmodulin binding protein, mitochondrial ATPase beta subunit, methyl tRNA synthetase and WRKY transcription factors. We previously obtained CaMADS in pepper and galactinol synthase ( CsGolS) in cucumber that were confirmed to be related with disease-resistance. CaMADS and CsGolS2 were transformed into the inbred line 'GO701-2' gourd, the inbred line '6-2-2' watermelon and the Kong-dye watermelon by Agrobacterium tumerfaciens LBA4404. Plant growth regulators (zeatin, BAP and IAA) were used for shoot regeneration and root induction for optimal condition. Putative transgenic plants were selected in medium containing 100mg/L kanamycin and integration of the CaMADS and CsGO/S2 into the genomic DNA were demonstrated by the PCR analysis. We isolated major soil-borne pathogens, such as Monosporascus cannonballus, Didymella bryoniae, Cladosporium cuvumerinum from the cultivation area of watermelon or root stock, and successfully established artificial inoculation method for each pathogen. This work was supported by a grant from BioGreen 21 program, Rural Development Administration, Republic of Korea.

  • PDF

Characteristics and Applications of Bioactive Peptides in Skin Care (생리활성 펩타이드의 피부미용학적 특성 및 활용)

  • Moh, Sang-Hyun;Jung, Dai-Hyun;Kim, Hyoung-Shik;Cho, Moon-Jin;Seo, Hyo-Hyun;Kim, Sung-Jun
    • KSBB Journal
    • /
    • v.26 no.6
    • /
    • pp.483-490
    • /
    • 2011
  • Bioactive peptides (BAP) showed excellent cosmetic activity than bio-materials such as caffeic acid (CA), gallic acid (GA), and nicotinic acid (NA). Caffeoyl tripeptide-1 (CT-1) is a BAP that is stabilized with Gly-His-Lys (GHK) tripeptide and CA by using Fmoc solid phase peptide synthesis. Digalloyl tetrapeptide-19 (DT-19) is stabilized by combining Lys-Glu-Cys-Gly with GA and nicotinoyl tripeptide-1 (NT-1) is synthesized by GHK and NA. According to experiments, CT-1 has an excellent anti-oxidant function even with a very small amount of 10 ppm CT-1. DT-19's tyrosinase inhibition activity has the better effect of about 28.57% in 0.01% and 33.33% in 0.005% of concentration and about 7.89% in 0.001% concentration than vitamin-C. In addition, NT-1 is safer than the NA. Almost BAPs like pal-KTTKS, acetyl hexapeptide, and copper tripeptide-1 have the anti-wrinkle effect while DT-19 and NT-1 are applicable for potential BAPs focused on the whitening effect. The three kinds of BAPs like CT-1, DT-19, and NT-1 consisting of amino acids are safe to the skin, and have more excellent stability than bio-materials which are found to be unstable and cause skin irritation. Due to the high biological activity of BAP in the field of skin care, its utilization will increase constantly.

3D Structure of Bacillus halodurans O-Methyltransferase, a Novel Bacterial O-Methyltransferase by Comparative Homology Modeling

  • Lee, Jee-Young;Lee, Sung-Ah;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.941-946
    • /
    • 2007
  • Bacillus halodurans O-methyltransferase (BhOMT) is a S-adenosylmethionine (SAM or AdoMet) dependent methyltransferase. Three dimensional structure of the BhOMT bound to S-adenosyl-L-homocysteine (SAH or AdoHcy) has been determined by comparative homology modeling. BhOMT has 40% sequence identity with caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) from alfalfa. Based on x-ray structure of CCoAOMT, three dimensional structure of BhOMT was determined using MODELLER. The substrate binding sites of these two proteins showed slight differences, but these differences were important to characterize the substrate of BhOMT. Automated docking study showed that four flavonoids, quercetin, fisetin, myricetin, and luteolin which have two hydroxyl groups simultaneously at 3'- and 4'-position in the B-ring and structural rigidity of Cring resulting from the double bond characters between C2 and C3, were well docked as ligands of BhOMT. These flavonoids form stable hydrogen bondings with K211, R170, and hydroxyl group at 3'-position in the Bring has stable electrostatic interaction with Ca2+ ion in BhOMT. This study will be helpful to understand the biochemical function of BhOMT as an O-methyltransferase for flavonoids.

Chemical Constituents from Artemisia iwayomogi Increase the Function of Osteoblastic MC3T3-E1 Cells

  • Ding, Yan;Liang, Chun;Choi, Eun-Mi;Ra, Jeong-Chan;Kim, Young-Ho
    • Natural Product Sciences
    • /
    • v.15 no.4
    • /
    • pp.192-197
    • /
    • 2009
  • Chemical investigation of the aerial parts of Artemisia iwayomogi has afforded five glycoside compounds. Their chemical structures were characterized by spectroscopic methods to be turpinionoside A (1), (Z)-3-hexenyl O-${\alpha}$-arabinopyranosyl-(1${\rightarrow}$6)-O-${\beta}$-D-glucopyranoside (2), (Z)-5'-hydroxyjasmone 5'-O-${\beta}$-Dglucopyranoside (3), (-)-syringaresinol-4-O-${\beta}$-D-glucopyranoside (4), and methyl 3,5-di-O-caffeoyl quinate (5). All of them were isolated for the first time from Artemisia species. The effect of compounds 1 - 5 on the function of osteoblastic MC3T3-E1 cells was examined by checking the cell viability, alkaline phosphatase (ALP) activity, collagen synthesis, and mineralization. Turpinionoside A (1) significantly increased the function of osteoblastic MC3T3-E1 cells. Cell viability, ALP activity, collagen synthesis, and mineralization were increased up to 117.2% (2 ${\mu}M$), 110.7% (0.4 ${\mu}M$), 156.0% (0.4 ${\mu}M$), and 143.0 % (2 ${\mu}M$), respectively.

Characterization of an O-Methyltransferase from Streptomyces avermitilis MA-4680

  • Yoon, Young-Dae;Park, Young-Hee;Yi, Yong-Sub;Lee, Young-Shim;Jo, Geun-Hyeong;Park, Jun-Cheol;Ahn, Joong-Hoon;Lim, Yoong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.9
    • /
    • pp.1359-1366
    • /
    • 2010
  • A search of the Streptomyces avermitilis genome reveals that its closest homologs are several O-methyltransferases. Among them, one gene (viz., saomt5) was cloned into the pET-15b expression vector by polymerase chain reaction using sequence-specific oligonucleotide primers. Biochemical characterization with the recombinant protein showed that SaOMT5 was S-adenosyl-L-methionine-dependent Omethyltransferase. Several compounds were tested as substrates of SaOMT5. As a result, SaOMT5 catalyzed O-methylation of flavonoids such as 6,7-dihydroxyflavone, 2',3'-dihydroxyflavone, 3',4'-dihydroxyflavone, quercetin, and 7,8-dihydroxyflavone, and phenolic compounds such as caffeic acid and caffeoyl Co-A. These reaction products were analyzed by TLC, HPLC, LC/MS, and NMR spectroscopy. In addition, SaOMT5 could convert phenolic compounds containing ortho-dihydroxy groups into O-methylated compounds, and 6,7-dihydroxyflavone was known to be the best substrate. SaOMT5 converted 6,7-dihydroxyflavone into 6-hydroxy-7-methoxyflavone and 7-hydroxy-6-methoxyflavone, and caffeic acid into ferulic acid and isoferulic acid, respectively. Moreover, SaOMT5 turned out to be a $Mg^{2+}$-dependent OMT, and the effect of $Mg^{2+}$ ion on its activity was five times greater than those of $Ca^{2+}$, $Fe^{2+}$, and $Cu^{2+}$ ions, EDTA, and metal-free medium.

Characterization of Chemical Composition in Poplar wood (Populus deltoides) by Suppression of CCoAOMT Gene Expression (CCoAOMT 유전자 발현 억제에 의한 현사시나무의 화학조성 변화)

  • Eom, In-Yong;Kim, Kwang-Ho;Lee, Soo-Min;Yi, Yong-Sub;Choi, Joon-Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.213-222
    • /
    • 2010
  • In this study, chemical compositions - holocellulose, lignin and monomeric sugars - were characterized with two poplar wood cell walls, one of which was grown at normal condition (CPW) and the other was genetically modified by antisence suppression of CCoAOMT gene expression (ACPW). Milled wood lignins were isolated from CPW and ACPW and subjected to methoxyl group, DFRC, Py-GC/MS, GPC, $^{13}C$-NMR analysis, respectively. There were few differences in holocellulose contents in both cell walls, which were determined to 81.6% in CPW and to 82.3% in ACPW. However, lignin contents in ACPW was clearly decreased by the suppression of CCoAOMT gene expression. In CPW 21.7% of lignin contents was determined, while lignin contents in ACPW was lowered to 18.3%. The relative poor solubility of ACPW in alkali solution could be attributed to the reduction of lignin content. The glucose contents of CPW and ACPW were measured to 511.0 mg/g and 584.8 mg/g and xylose contents 217.8 mg/g and 187.5 mg/g, respectively, indicating that suppression of CCoAOMT gene expression could be also influenced to the formation of monomeric sugar compositions. In depth investigation for milled wood lignin (MWL) isolated from both samples revealed that the methoxyl contents at ACPW was decreased by 7% in comparison to that of CPW, which were indirectly evidenced by $^{13}C$-NMR spectra and Py-GC/MS. According to the data from Py-GC/MS S/G ratios of lignin in CPW and ACPW were determined to 0.59 and 0.44, respectively. As conclusive remark, the biosynthesis of syringyl unit could be further influenced by antisense suppression of CCoAOMT during phenylpropanoid pathway in the plant cell wall rather than that of guaiacyl unit.