Browse > Article
http://dx.doi.org/10.4014/jmb.1005.05012

Characterization of an O-Methyltransferase from Streptomyces avermitilis MA-4680  

Yoon, Young-Dae (Division of Bioscience and Biotechnology, BMIC, RCD, Konkuk University)
Park, Young-Hee (Division of Bioscience and Biotechnology, BMIC, RCD, Konkuk University)
Yi, Yong-Sub (Division of Bioscience and Biotechnology, BMIC, RCD, Konkuk University)
Lee, Young-Shim (Division of Bioscience and Biotechnology, BMIC, RCD, Konkuk University)
Jo, Geun-Hyeong (Division of Bioscience and Biotechnology, BMIC, RCD, Konkuk University)
Park, Jun-Cheol (National Institute of Animal Science, Rural Development Administration)
Ahn, Joong-Hoon (Division of Bioscience and Biotechnology, BMIC, RCD, Konkuk University)
Lim, Yoong-Ho (Division of Bioscience and Biotechnology, BMIC, RCD, Konkuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.9, 2010 , pp. 1359-1366 More about this Journal
Abstract
A search of the Streptomyces avermitilis genome reveals that its closest homologs are several O-methyltransferases. Among them, one gene (viz., saomt5) was cloned into the pET-15b expression vector by polymerase chain reaction using sequence-specific oligonucleotide primers. Biochemical characterization with the recombinant protein showed that SaOMT5 was S-adenosyl-L-methionine-dependent Omethyltransferase. Several compounds were tested as substrates of SaOMT5. As a result, SaOMT5 catalyzed O-methylation of flavonoids such as 6,7-dihydroxyflavone, 2',3'-dihydroxyflavone, 3',4'-dihydroxyflavone, quercetin, and 7,8-dihydroxyflavone, and phenolic compounds such as caffeic acid and caffeoyl Co-A. These reaction products were analyzed by TLC, HPLC, LC/MS, and NMR spectroscopy. In addition, SaOMT5 could convert phenolic compounds containing ortho-dihydroxy groups into O-methylated compounds, and 6,7-dihydroxyflavone was known to be the best substrate. SaOMT5 converted 6,7-dihydroxyflavone into 6-hydroxy-7-methoxyflavone and 7-hydroxy-6-methoxyflavone, and caffeic acid into ferulic acid and isoferulic acid, respectively. Moreover, SaOMT5 turned out to be a $Mg^{2+}$-dependent OMT, and the effect of $Mg^{2+}$ ion on its activity was five times greater than those of $Ca^{2+}$, $Fe^{2+}$, and $Cu^{2+}$ ions, EDTA, and metal-free medium.
Keywords
O-Methyltransferase; Streptomyces avermitilis; flavonoids;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Dhar, K. and J. Rosazza. 2000. Purification and characterization of Streptomyces griseus catechol O-methyltransferase. Appl. Environ. Microbiol. 66: 4877-4882.   DOI   ScienceOn
2 Dixon, R. A. 2001. Natural products and plant disease resistance. Nature 411: 843-847.   DOI   ScienceOn
3 Yoon, Y. D., Y. S. Yi, Y. S. Lee, S. H. Kim, B. G. Kim, J. H. Ahn, and Y. H. Lim. 2005. Characterization of O-methyltransferase ScOMT1 cloned from Streptomyces coelicolor A3(2). Biochim. Biophys. Acta 1730: 85-95.   DOI   ScienceOn
4 Schapira, A. H. and C. W. Olanow. 2008. Drug selection and timing of initiation of treatment in early Parkinson's disease. Ann. Neurol. 64: S47-S55.
5 Schubert, H. L., R. M. Blumenthal, and X. Cheng. 2003. Many paths to methyltransfer: A chronicle of convergence. Trends Biochem. Sci. 28: 329-335.   DOI   ScienceOn
6 Vidgren, J., L. S. Svensson, and A. Liljas. 1994. Crystal structure of catechol O-methyltransferase. Nature 368: 354-358.   DOI   ScienceOn
7 Ye, Z. H. and J. E. Varner. 1995. Differential expression of two O-methyltransferases in lignin biosynthesis in Zinnia elegans. Plant Physiol. 108: 459-467.   DOI
8 Ramagopal, U. A., Y. V. Patskovsky, and S. C. Almo. 2006. Crystal structure of putative O-methyltransferase from Bacillus halodurans. Protein Data Bank Accession ID 2GPY.pdb.
9 Martz, F., S. Maury, G. Pincon, and M. Legrand. 1998. cDNA cloning, substrate specificity and expression study of tobacco caffeoyl co-A 3-O-methyltransferase, a lignin biosynthetic enzyme. Plant Mol. Biol. 36: 427-437.   DOI   ScienceOn
10 Mol, J., E. Grotewold, and R. Koes. 1998. How genes paint flowers and seeds. Trends Plant Sci. 3: 212-217.   DOI   ScienceOn
11 Li, J., T.-M. Ou-Lee, R. Raba, R. G. Amundson, and R. L. Last. 1993. Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell 5: 171-179.   DOI
12 Marchler-Bauer, A., J. B. Anderson, C. DeWeese-Scott, N. D. Fedorova, L. Y. Geer, S. He, et al. 2003. CDD: A curated Entrez database of conserved domain alignments. Nucleic Acids Res. 31: 383-387.   DOI   ScienceOn
13 Kim, H. J., B. H. Moon, J. H. Ahn, and Y. H. Lim. 2006. Complete NMR signal assignments of flavonol derivatives. Magn. Reson. Chem. 44: 188-190   DOI   ScienceOn
14 Lee, E. J., D. H. Kim, Y. K. Woo, H. G. Hur, and Y. H. Lim. 2008. Solution structure of peptide AG4 used to form silver nanoparticles. Biochem. Biophys. Res. Commun. 376: 595-599.   DOI   ScienceOn
15 Lee, Y. J., B. G. Kim, and J. H. Ahn. 2006. Molecular cloning and characterization of Bacillus cereus O-methyltransferase. J. Microbiol. Biotechnol. 16: 619-622.   과학기술학회마을
16 Lee, Y. J., B. G. Kim, Y. H. Park, Y. H. Lim, H. G. Hur, and J. H. Ahn. 2006. Biotransformation of flavonoids with O-methyltransferase from Bacillus cereus. J. Microbiol. Biotechnol. 16: 1090-1096.   과학기술학회마을
17 Lee, Y. J., Y. M Jeon, J. S. Lee, B. G. Kim, C. H. Lee, and J. H. Ahn. 2007. Enzymatic synthesis of phenolic CoAs using 4-coumarate: Coenzyme A ligase (4CL) from rice. Bull. Korean Chem. Soc. 28: 365-366.   DOI   ScienceOn
18 Ibdah, M., X. H. Zhang, J. Schmidt, and T. Vogt. 2003. A novel $Mg^{2+}$-dependent O-methyltransferase in the phenylpropanoid metabolism of Mesembryanthemum crystallinum. J. Biol. Chem. 278: 43961-43972.   DOI   ScienceOn
19 Ikeda, H., J. Ishikawa, A. Hanamoto, M. Shinose, H. Kikuchi, T. Shiba, Y. Sakaki, M. Hattori, and S. Omura. 2003. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nature Biotechnol. 21: 526-531.   DOI   ScienceOn
20 Jacobs, M. and P. H. Rubery. 1988. Naturally occurring auxin transport regulators. Science 241: 246-249.
21 Dixon, R. A. and M. J. Harrison. 1999. Activation structure and organization of genes involved in microbial defense in plants. Adv. Genet. 28: 165-234.
22 Ferrer, J. L., C. Zubieta, R. A. Dixon, and J. P. Noel. 2005. Crystal structures of alfalfa caffeoyl coenzyme A 3-O-methyltransferase. Plant Physiol. 137: 1009-1017.   DOI   ScienceOn
23 Hoffmann, L., S. Maury, M. Bergdoll, L. Thion, M. Erard, and M. Legrand. 2001. Indentification of the enzymatic active site of tobacco caffeoyl coenzyme A O-methyltransferase by site-directed mutagenesis. J. Biol. Chem. 276: 36831-36838.   DOI   ScienceOn
24 Bentley, S. D., K. F. Chater, A.-M. Cerdeno-Tarraga, G. L. Challis, N. R. Thomson, K. D. James, et al. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolorA3(2). Nature 417: 141-147.   DOI   ScienceOn