Analysis of Chalcone Synthase and Flavanone 3-Hydroxylase Activity in Lilium Cultivars

Lilium품종의 Chalcone Synthase와 Flavanone 3-Hydroxylase 효소학적 분석

  • Yu, Sun-Nam (Department of Biotechnology, Catholic University of Daegu)
  • 유순남 (대구가톨릭대학교 생명공학과)
  • Received : 2008.12.26
  • Published : 20081200

Abstract

In this work, we analyzed the activity of control enzymes of flower color biosynthesis, chalcone synthase (CHS) and flavanone 3-hydroxylase (FHT) using biochemical and enzymological methods in Lilium longiflorum and 11 Lilium cultivars. The results obtained are as follows ; Naringenin (NAR) was synthesized in all Lilium cultivars tested by the catalytic activity of CHS which used malonyl-CoA and 4-coumaryol-CoA as substrates. Substrate-specific activity of CHS was observed because eridictiol (ERI), which uses caffeoyl-CoA as a substrate, was not detected in tested cultivars. In next step, dihydroflavone product was synthesized by FHT using flavanones as a substrate. FHT synthesized dihydrokaempferol (DHK) by using NAR as substrates. A remarkable activity of FHT was observed in other 11 cultivars.

본 실험에서 Lilium longiflorum과 11품종에 대한 biochemical, enzymology 등의 분석방법을 적용하여, 화색생합성조절유전자 chalcone synthase(CHS), flavanone 3-hydroxylase(FHT)의 활성을 분석한 결과는 다음과 같다. 1. Flavonoid의 기본골격형성을 위한 첫 효소인 CHS가 malonyl-CoA와 p-coumaroyl-CoA 기질을 촉매하여 naringenin(NAR) 산물을 생성하였고, caffeoyl-CoA와 p-coumaroyl-CoA 기질에는 eridictiol(ERI)를 생성하지 않아, 백합의 CHS는 기질특이성을 나타냈다. 2. L. longiflorum에서 FHT 효소는 NAR를 기질로써 사용하여, dihydrokaempferol(DHK) 산물을 생성하였고, 그 외 11백합품종에서도 FHT 효소의 뚜렷한 활성이 확인되었다.

Keywords

References

  1. Britsch l. 1990. Purification and characterization of flavone synthase I, a 2-oxoglutarate-dependent desaturase. Archives of Biochemistry and Biophysics. 276:348-354 https://doi.org/10.1016/0003-9861(90)90731-D
  2. Britsch L, Dedio J, Saedler H, Forkmann G. 1993. Molecular characterization of flavanone 3-hydroxylases. consensus sequence, comparison with related enzymes and the role of conserved residues. Eur. J. Biochem. 217:745-754 https://doi.org/10.1111/j.1432-1033.1993.tb18301.x
  3. Britsch L, Grisebach H. 1986. Purification and characterization of (2S)-flavanone 3-hydroxylase from Petunia hybrida. Eur. J. Biochem. 156:569-577 https://doi.org/10.1111/j.1432-1033.1986.tb09616.x
  4. Britsch L, Ruhnau-Brich B, Forkmann G. 1992. Molecular cloning, sequence analysis and in vitro expression of flavanone 3-hydroxylase from Petunia hybrida. J. Biol. Chem. 267:5380-5387
  5. Choi GT. 2002. Genetic modulation of flower color intensity by newly developed dominant-negative CHS. J. Plant. Biotechnol. Proceedings of the 9th Symposium. 69-72
  6. Courtney-Gutterson N. 1994. The biologist's palette: Genetic engineering of anthocyanin biosynthesis and flower color. pp.93-124. In: Ellis EE, Kuroki GW. und Stafford HA. (ed.). Genetic engineering of plant secondary metabolism. Plenum Press, New York
  7. Dixon RA, Steele CL. 1999. Flavonoids and isoflavonoids: A gold mine for metabolic engineering. Trends Plant Sci. 4:394-400 https://doi.org/10.1016/S1360-1385(99)01471-5
  8. Epping B, Kittel M, Ruhnau B, Hemleben V. 1990. Isolation and sequence analysis of a chalcone synthase cDNA of Matthiola incana R. Br.(Brassicaceae). Plant. Mol. Biol. 14:1061-1063 https://doi.org/10.1007/BF00019405
  9. Forkmann G. 1977. precursors and genetic control of anthocyan synthesis in Matthiola incana R. Br. Planta. 137:159-163 https://doi.org/10.1007/BF00387553
  10. Forkmann G, Heller W. 1999. Biosynthese of flavonoids. pp. 714-748. In: Comprehensive natural products chemistry Vol. 1 (U. Sankawa). Elsevier, Amsterdam
  11. Forkmann G, Heller W, Grisebach H. 1980. Anthocyanin biosynthesis in flowers of Matthiola incana. Flavanone 3- and flavonoid 3'-hydroxylases. Z. Naturforsch. 35c:691-695
  12. Forkmann G, Martens S. 2001. Metabolic engineering and applications of flavonoids. Curr. Opin. Biotech. 12:155-160 https://doi.org/10.1016/S0958-1669(00)00192-0
  13. Froemel S, De Vlaming P, Stotz G, Wiering H, Forkmann G, Schram AW. 1985. Genetic and biochemical studies on the conversion of flavanones to dihydroflavonols in flowers of Petunia hybrida. Theor Appl Genet. 70:561-568 https://doi.org/10.1007/BF00305991
  14. Harzdina G. 1992. Compartmentaion in aromatic me tabolism. pp.26:1-24. In: Stafford HA, Ibrahim RK. (ed.). Phenolic metabolism in plants. Plenum Press, New York
  15. Heller W, Forkmann G, Brisch L, Grisebach H. 1985. Enzymatic reduction of dihydroflavonols to flavan-3,4- cisdiols with flower extracts from Matthiola incana and its role in anthocyanin biosynthesis. Planta. 165:284-287 https://doi.org/10.1007/BF00395052
  16. Holton TA, Cornish E. 1995. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell. 7:1071-1083 https://doi.org/10.1105/tpc.7.7.1071
  17. Kim HJ, Kim JM, Choi DC, Choi JS, Choi YG, Park BM. 2002. Characteristics of growth and flowering in Introduced Lilium adiatic hybrid. J. Kor. Flower Res. Soc. 10:5-13
  18. Kim HJ, Park YJ. 2004. Chartateristics of grwth and flowering of Lilium oriental Hybrid. J. Kor. Flower Res. Soc. 12:27-35
  19. Koes TM, Spelt CE, Mol JNM, Gerats AGM. 1987. The chalcone synthase multigene family of Petunia hybrida: Sequence homology, chromosomal localization, and evolutionary aspects. Plant Mol. Biol. 10:159-169 https://doi.org/10.1007/BF00016153
  20. Kuhn B, Forkmann G, Seyffert W. 1978. Genetic con trol of chalcone-flavanone- isomerase activity in Callistephus chinensis. Planta. 138:199-203 https://doi.org/10.1007/BF00386811
  21. Lee HJ, Nahm SH, Ahn BJ, Joung HY, Min BW. 2004. Cloning of cDNA coding for dihydroflavonol 4-reductase (DFR) and characterization of dfr expression in carnation petals. J. Kor. Soc. Hort. Sci. 45:49-54
  22. Lighty, R.W, 1968. Evolutionary tends in lilies. Royal Hort. Soc. The lily yearbook 31:40-44
  23. Lighty RW. 1969. The lilies of Korea. The Lily Yearbook. 31:31-39
  24. Lighty RW. 1970. The Lily of Korea. The Lily Yearbook. 33:102-105
  25. Lukacin R, Britsch L. 1997. Identification of strictly co nserved histidine and arginine residues as part of the active site in Petunia hybrida flavanone $3{\beta}$-hydroxylase. European journal of Biochemistry. 249:748-757 https://doi.org/10.1111/j.1432-1033.1997.t01-2-00748.x
  26. Lukacin R, Groning I, Pieper U, Martern U. 2000a. Site-directed mutagenesis of the active site serine 290 in flavanone $3{\beta}$-hydroxylase from Petunia hybrida. European Journal of Biochemistry. 267:853-860 https://doi.org/10.1046/j.1432-1327.2000.01064.x
  27. Lukacin R, Groning I, Schiltz E, Britsch L, Martern U. 2000b. Purification of recombinant flavanone $3{\beta}$ -hydroxylase from Petunia hybrida and assignment of the primary site of proteolytic degradation. Archives of Biochemistry and Biophysics. 375:364-370 https://doi.org/10.1006/abbi.1999.1676
  28. Mansuy D. 1998. The great diversity of reactions catalyzed by cytochromes P450. Comparative biochemistry and physiology. Part C. 121:5-14
  29. Martens S. 1995. Flavonoidbiosynthese in Gerbera : Enzymologische Charakterisierung der Chalkonsynthase, der Flavanon 3-Hydroxylase und der Flavonsynthase II. Diplomarbeit am Lehrstuhl fur Zierpflanzenbau; TUM Freising- Weihenstephan https://doi.org/10.1016/S1369-703X(02)00224-3
  30. Martens S, Knott J, Seitz CA, Janvari L, Yu SN, Forkmann G. 2003. Impact of biochemical prestudies on specific metabolic enginneering straegies of flavonoid biosyntesis in plant tissues,. Biochemical Engineering Journal 14:227-235 https://doi.org/10.1016/S1369-703X(02)00224-3
  31. Min BW. 2006. Cloning and expression study of dihydroflavonol 4-reductase from summer aster (Callistephus chinensis). Hort. Environ. Biotechnol. 47:222-229
  32. Paiva NL. 2000. An introduction to the biosynthesis of chemicals used in plant-microbe communication. J. Plant Growth Regul. 19:131-143 https://doi.org/10.1016/S0031-9422(03)00341-8
  33. Pelt JL, Downes WA, Schoborg RV, Mclntosh CA. 2003. Flavanone 3-hydroxylase expression in Citrus paradisi and Petunia hybrida seedlings. Phytochem. 64:435-444 https://doi.org/10.1016/S0031-9422(03)00341-8
  34. Royal Horticultural Society. 1966. Royal Horticultural Society color chart. Roy. Hortic. Soc. London
  35. Seitz C. 2000. Blutenfarben bei Osteospermum und Moglichkeiten der Züchterischen Beeinflussung. Diplomarbeit an Lehrstuhl für Zierpflanyenbau der TU München Freising/ Weihenstephan https://doi.org/10.1016/0031-9422(82)85183-2
  36. Spribille R, Forkmann G. 1982a. Genetic control of chalcone synthase activity in flowers of Antirrhinum majus. Phytochem. 21:2231-2234 https://doi.org/10.1007/BF00392549
  37. Spribille R, Forkmann G. 1982b. Chalcone synthesis and hydroxylation of flavonoids in 3'-position with enzyme preparations from flowers Dianthus caryophyllus L. (carnation). Planta. 155:176-182 https://doi.org/10.1007/BF00392549
  38. Stafford HA. 1981. Compartmentation in natural product biosynthesis by multienzyme complexes. pp.118-138. In: Conn EE. (ed.). Secondary plant products. Academic Press, New York https://doi.org/10.1104/pp.96.3.680
  39. Stafford HA. 1991. Flavonoid evolution: an enzymic approach. Plant Physiol. 96:680-685 https://doi.org/10.1074/jbc.M309228200
  40. Turnbull JJ, Nakajima J, Welford RWD, Yamazaki M, Saito K, Schofield CJ. 2004. Mechanistic studies on there 2-oxoglutarate-dependent oxygenases of flavonoid biosynthesis. J. Biol. Chem. 279:1206-1216
  41. Tunen Van AJ, Koes RE, Spelt CE, Krol AR, Stuitje AR, Mol JNM. 1988. Cloning of the two chalcone flavanone isomerase genes from Petunia hybrida: Coordinate, lightregulated, and differential expression of flavonoid genes. EMBO J. 7:1257-1263
  42. Tyrach A. 1995. Untersuchungen zur Genetik von Blu tenpigmenten und zu quantitativen Merkmalen bei Gerbera. Dissertation am Lehrstuhl für Zierpflanzenbau der Technische Universitat Munchen-Weihenstephan https://doi.org/10.1104/pp.126.2.485
  43. Winkel-Shirley B. 2001. Flavonoid biosynthesis: A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 126:485-493 https://doi.org/10.1104/pp.126.2.485
  44. Yu SN. 2007. Analysis of Flavonol and Anthocynidin in Lily. Flower Res.J. 15:270-275