• Title/Summary/Keyword: Caenorhabditis Elegans

Search Result 199, Processing Time 0.021 seconds

A Novel Calcineurin-interacting Protein, CNP-3, Modulates Calcineurin Deficient Phenotypes in Caenorhabditis elegans

  • Kim, Yun Hee;Song, Hyun-Ok;Ko, Kyung Min;Singaravelu, Gunasekaran;Jee, Changhoon;Kang, Junsu;Ahnn, Joohong
    • Molecules and Cells
    • /
    • v.25 no.4
    • /
    • pp.566-571
    • /
    • 2008
  • Calcineurin (Cn) is a calcium/calmodulin-dependent serine/threonine protein phosphatase that has diverse functions in different cell types and organisms. We screened proteins interacting with the C. elegans CnA homolog, TAX-6, by the yeast two-hybrid system. CNP-3 (Calcineurin interacting protein-3) is a novel protein that physically interacts with the catalytic domain of TAX-6. It is strongly expressed in the nuclei of intestine, hypodermis, dorsal uterine regions and spermatheca. Expression begins around the 60-cell stage and proceeds during all larval stages and the adult. To elucidate the biological function of cnp-3 we isolated a cnp-3 deletion mutant. Since CNP-3 binds CnA, we looked at factors associated with calcineurin loss-of-function mutants, such as brood size, body size, serotonin- and levamisole-mediated egg-laying behavior. The cnp-3(jh145) single mutant had no gross defects compared to wild-type animal. However, the phenotypes of the double mutants, tax-6(p675);cnp-3(jh145) and cnb-1(jh103);cnp-3(jh145), were more severe in terms of brood size, body size and serotonin-mediated egg-laying defects than tax-6(p675) and cnb-1(jh103), respectively. These results suggest that dysfunction of cnp-3 enhances certain calcineurin loss-of-function phenotypes in C. elegans.

Lifespan Extending Effects of Helianthus tuberosus Linne in C. elegans (예쁜꼬마선충을 이용한 돼지감자의 수명 연장 효능)

  • Lee, Byung Ju;Yoon, Young Jin;Oh, Jong Woo;Park, Zi Won;Lee, Hyun Joo;Kim, Yong Sung;Cha, Dong Seok;Kwon, Jin;Oh, Chan Ho;Jeon, Hoon
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.3
    • /
    • pp.280-286
    • /
    • 2016
  • Helianthus tuberosus Linne (Compositae) has been widely used as a folk remedy to treat various ailments including fever, bleeding, fracture and contusion. This study was designed to elucidate the lifespan extending activities MeOH extract of the tubers of Helianthus tuberosus Linne (MHT) using Caenorhabditis elegans (C. elegans) model system. In the current study, we found that the lifespan of worms was significantly extended by MHT supplement, dose-dependently. MHT also provided robust protection against various stress environments such as osmotic, thermal and oxidative condition. In addition, elevated antioxidant enzyme activities by MHT resulted in attenuation of intracellular reactive oxygen spices (ROS) levels, suggesting antioxidant capacity of MHT might be associated with longevity properties. Herein, we showed that altered food intake and growth of worms were also involved in the MHT activity. Furthermore, MHT increased body movement in aged worms, indicating possible role for MHT in healthspan.

Protein Kinase CK2 Is Upregulated by Calorie Restriction and Induces Autophagy

  • Park, Jeong-Woo;Jeong, Jihyeon;Bae, Young-Seuk
    • Molecules and Cells
    • /
    • v.45 no.3
    • /
    • pp.112-121
    • /
    • 2022
  • Calorie restriction (CR) and the activation of autophagy extend healthspan by delaying the onset of age-associated diseases in most living organisms. Because protein kinase CK2 (CK2) downregulation induces cellular senescence and nematode aging, we investigated CK2's role in CR and autophagy. This study indicated that CR upregulated CK2's expression, thereby causing SIRT1 and AMP-activated protein kinase (AMPK) activation. CK2α overexpression, including antisense inhibitors of miR-186, miR-216b, miR-337-3p, and miR-760, stimulated autophagy initiation and nucleation markers (increase in ATG5, ATG7, LC3BII, beclin-1, and Ulk1, and decrease in SQSTM1/p62). The SIRT1 deacetylase, AKT, mammalian target of rapamycin (mTOR), AMPK, and forkhead homeobox type O (FoxO) 3a were involved in CK2-mediated autophagy. The treatment with the AKT inhibitor triciribine, the AMPK activator AICAR, or the SIRT1 activator resveratrol rescued a reduction in the expression of lgg-1 (the Caenorhabditis elegans ortholog of LC3B), bec1 (the C. elegans ortholog of beclin-1), and unc-51 (the C. elegans ortholog of Ulk1), mediated by kin-10 (the C. elegans ortholog of CK2β) knockdown in nematodes. Thus, this study indicated that CK2 acted as a positive regulator in CR and autophagy, thereby suggesting that these four miRs' antisense inhibitors can be used as CR mimetics or autophagy inducers.

Processed Panax ginseng, sun ginseng, inhibits the differentiation and proliferation of 3T3-L1 preadipocytes and fat accumulation in Caenorhabditis elegans

  • Lee, Hyejin;Kim, Jinhee;Park, Jun Yeon;Kang, Ki Sung;Park, Joeng Hill;Hwang, Gwi Seo
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.257-267
    • /
    • 2017
  • Background: Heat-processed ginseng, sun ginseng (SG), has been reported to have improved therapeutic properties compared with raw forms, such as increased antidiabetic, anti-inflammatory, and antihyperglycemic effects. The aim of this study was to investigate the antiobesity effects of SG through the suppression of cell differentiation and proliferation of mouse 3T3-L1 preadipocyte cells and the lipid accumulation in Caenorhabditis elegans. Methods: To investigate the effect of SG on adipocyte differentiation, levels of stained intracellular lipid droplets were quantified by measuring the oil red O signal in the lipid extracts of cells on differentiation Day 7. To study the effect of SG on fat accumulation in C. elegans, L4 stage worms were cultured on an Escherichia coli OP50 diet supplemented with $10{\mu}g/mL$ of SG, followed by Nile red staining. To determine the effect of SG on gene expression of lipid and glucose metabolism-regulation molecules, messenger RNA (mRNA) levels of genes were analyzed by real-time reverse transcription-polymerase chain reaction analysis. In addition, the phosphorylation of Akt was examined by Western blotting. Results: SG suppressed the differentiation of 3T3-L1 cells stimulated by a mixture of 3-isobutyl-1-methylxanthine, dexamethasone, and insulin (MDI), and inhibited the proliferation of adipocytes during differentiation. Treatment of C. elegans with SG showed reductions in lipid accumulation by Nile red staining, thus directly demonstrating an antiobesity effect for SG. Furthermore, SG treatment down-regulated mRNA and protein expression levels of peroxisome proliferator-activated receptor subtype ${\gamma}$ ($PPAR{\gamma}$) and CCAAT/enhancer-binding protein-alpha ($C/EBP{\alpha}$) and decreased the mRNA level of sterol regulatory element-binding protein 1c in MDI-treated adipocytes in a dose-dependent manner. In differentiated 3T3-L1 cells, mRNA expression levels of lipid metabolism-regulating factors, such as amplifying mouse fatty acid-binding protein 2, leptin, lipoprotein lipase, fatty acid transporter protein 1, fatty acid synthase, and 3-hydroxy-3-methylglutaryl coenzyme A reductase, were increased, whereas that of the lipolytic enzyme carnitine palmitoyltransferase-1 was decreased. Our data demonstrate that SG inversely regulated the expression of these genes in differentiated adipocytes. SG induced increases in the mRNA expression of glycolytic enzymes such as glucokinase and pyruvate kinase, and a decrease in the mRNA level of the glycogenic enzyme phosphoenol pyruvate carboxylase. In addition, mRNA levels of the glucose transporters GLUT1, GLUT4, and insulin receptor substrate-1 were elevated by MDI stimulation, whereas SG dose-dependently inhibited the expression of these genes in differentiated adipocytes. SG also inhibited the phosphorylation of Akt (Ser473) at an early phase of MDI stimulation. Intracellular nitric oxide (NO) production and endothelial nitric oxide synthase mRNA levels were markedly decreased by MDI stimulation and recovered by SG treatment of adipocytes. Conclusion: Our results suggest that SG effectively inhibits adipocyte proliferation and differentiation through the downregulation of $PPAR{\gamma}$ and $C/EBP{\alpha}$, by suppressing Akt (Ser473) phosphorylation and enhancing NO production. These results provide strong evidence to support the development of SG for antiobesity treatment.

Protective Effects of Pyrrosiae Folium on the 2% Glucose-Induced Toxicity in Caenorhabditis elegans (석위가 예쁜꼬마선충에서 Glucose로 유도된 독성에 미치는 영향)

  • Kim, Bong Seok;Lee, Byung Ju;Lee, Hyun Joo;An, Soon Young;Park, Zi Won;Yoon, Seon Hwa;Oh, Mi Jin;Kwon, Jin;Lee, Se Youn;Cha, Dong Seok;Oh, Chan Ho;Jeon, Hoon
    • Korean Journal of Pharmacognosy
    • /
    • v.48 no.3
    • /
    • pp.179-186
    • /
    • 2017
  • Pyrrosia lingua which belongs to Polypodiaceae has been used as a traditional medicine for the treatment of urinary system inflammation, urination disorder, and bronchitis. However, there are not enough phytochemical and pharmacological studies of P. lingua up to now. Here in this study, the protective effect of MeOH extract of whole plant of Pyrrosia lingua (MPL) against 2% glucose-induced toxicity was investigated using Caenorhabditis elegans (C. elegans) model system. We found that MPL significantly extended the lifespan of wild-type nematode under normal culture condition. MPL also effectively recovered the decreased lifespan caused by 2% glucose-toxicity. In addition, MPL efficiently attenuated the increased glucose concentration inside of nematode. Further studies evaluating diabetes-related factors revealed that MPL reduced both intracellular ROS and lipid accumulation which were up-regulated under 2% glucose supplement condition. Our data also showed that MPL improved the 2% glucose-induced shortened body movement of nematode. Lastly, we carried out genetic studies using several single gene knockout mutants to establish the possible target of MPL. Our results demonstrated that genes such as daf-2 and daf-16 were responsible for the protective activity of MPL against 2% glucose-induced toxicity. These results indicate that MPL exerts protective action against 2% glucose via regulation of insulin/IGF-1 sinaling pathway and FOXO activation.

Ethanol extract of Aster glehni exhibits anti-inflammatory and anti-oxidant effects in RAW 264.7 cells and Caenorhabditis elegans (섬쑥부쟁이 에탄올 추출물이 대식세포와 예쁜꼬마선충에서의 항염증 및 항산화 효과 )

  • Mi-Kyung Seo;Han-Na Chu;Da-Bin Lee;Haeng-Ran Kim;In-Seon Hwang;Yong-Jin Jeong;Sung-Ran Yoon;Seok-Seong Kang;Kyeong-A Jang;Min-Sook Kang
    • Food Science and Preservation
    • /
    • v.30 no.6
    • /
    • pp.1095-1106
    • /
    • 2023
  • This study investigated the anti-oxidative and anti-inflammatory effects of Aster glehni (AG) extract in RAW 264.7 cells and Caenorhabditis elegans. The total polyphenol and flavonoid contents were higher in the ethanol extracts than in the hot water extracts. As a result of measuring the moisture contents (%) and extraction yields (%) of AG and drying A. glehni for processing (DAG), 70% ethanol, which has the highest percentage of extraction yield, was selected as the final solvent. DPPH radical scavenging activity showed higher antioxidant activity of ethanol extracts of DAG than AG. The cytotoxicity assay of the AG or DAG ethanol extracts was treated at different concentrations (25, 50, and 100 ㎍/mL), and cell viability rates were higher than 80% at all concentrations. The LPS-stimulated nitric oxide (NO) production in RAW 264.7 was significantly reduced at all concentrations of AG and DAG groups. As a result of measuring the gene expression of iNOS, which induces NO production, the AG or DAG group decreased by 33% and 32%, compared with the phosphate buffer saline (PBS) group. Under inflammatory stress conditions, the survival rate of C. elegans treated with AG or DAG ethanol extract with LPS showed concentration-dependent improvement in survival rate compared with the PBS group. Considering these results, AG could potentially be developed as an antioxidant and anti-inflammatory functional food material.

Biological Characteristics of Recombinant Arthrobotrys oligospora Chitinase AO-801

  • Gong, Shasha;Meng, Qingling;Qiao, Jun;Huang, Yunfu;Zhong, Wenqiang;Zhang, Guowu;Zhang, Kai;Li, Ningxing;Shang, Yunxia;Li, Zhiyuan;Cai, Xuepeng
    • Parasites, Hosts and Diseases
    • /
    • v.60 no.5
    • /
    • pp.345-352
    • /
    • 2022
  • Chitinase AO-801 is a hydrolase secreted by Arthrobotrys oligospora during nematode feeding, while its role remained elusive. This study analyzed the molecular characteristics of recombinant chitinase of Arthrobotrys oligospora (reAO-801). AO-801 belongs to the typical glycoside hydrolase 18 family with conserved chitinase sequence and tertiary structure of (α/β)8 triose-phosphate isomerase (TIM) barrel. The molecular weight of reAO-801 was 42 kDa. reAO-801 effectively degraded colloidal and powdered chitin, egg lysate, and stage I larval lysate of Caenorhabditis elegans. The activity of reAO-801 reached its peak at 40℃ and pH values between 4-7. Enzyme activity was inhibited by Zn2+, Ca2+, and Fe3+, whereas Mg2+ and K+ potentiated its activity. In addition, urea, sodium dodecyl sulfate, and 2-mercaptoethanol significantly inhibited enzyme activity. reAO-801 showed complete nematicidal activity against C. elegans stage I larvae. reAO-801 broke down the C. elegans egg shells, causing them to die or die prematurely by hatching the eggs. It also invoked degradation of Haemonchus contortus eggs, resulting in apparent changes in the morphological structure. This study demonstrated the cytotoxic effect of reAO-801, which laid the foundation for further dissecting the mechanism of nematode infestation by A. oligospora.

Distinct sets of lysosomal genes define synucleinopathy and tauopathy

  • Kyu Won Oh;Dong-Kyu Kim;Ao-Lin Hsu;Seung-Jae Lee
    • BMB Reports
    • /
    • v.56 no.12
    • /
    • pp.657-662
    • /
    • 2023
  • Neurodegenerative diseases are characterized by distinct protein aggregates, such as those of α-synuclein and tau. Lysosomal defect is a key contributor to the accumulation and propagation of aberrant protein aggregates in these diseases. The discoveries of common proteinopathies in multiple forms of lysosomal storage diseases (LSDs) and the identification of some LSD genes as susceptible genes for those proteinopathies suggest causative links between LSDs and the proteinopathies. The present study hypothesized that defects in lysosomal genes will differentially affect the propagation of α-synuclein and tau proteins, thereby determining the progression of a specific proteinopathy. We established an imaging-based high-contents screening (HCS) system in Caenorhabditis elegans (C. elegans) model, by which the propagation of α-synuclein or tau is measured by fluorescence intensity. Using this system, we performed RNA interference (RNAi) screening to induce a wide range of lysosomal malfunction through knock down of 79 LSD genes, and to obtain the candidate genes with significant change in protein propagation. While some LSD genes commonly affected both α-synuclein and tau propagation, our study identified the distinct sets of LSD genes that differentially regulate the propagation of either α-synuclein or tau. The specificity and efficacy of these LSD genes were retained in the disease-related phenotypes, such as pharyngeal pumping behavior and life span. This study suggests that distinct lysosomal genes differentially regulate the propagation of α-synuclein and tau, and offer a steppingstone to understanding disease specificity.

Cloning of the novel putative apoptosis-related gene of Spirometra erinacei (Order Pseudophyllidea)

  • Lee Soo-Ung;Huh Sun
    • Parasites, Hosts and Diseases
    • /
    • v.44 no.3
    • /
    • pp.233-237
    • /
    • 2006
  • We postulated that apolysis was processed in accordance with apoptotic changes occurring in a cestode, Spirometra erinacei (Pseudophyllidea). We cloned the novel putative apoptosis-associated gene from S. erinacei via screening of a S. erinacei cDNA library with a ced-3 gene (activator of apoptosis) probe from Caenorhabditis elegans. We identified a 261-bp cDNA sequence, which encodes for an 86-amino acid protein. The cloned gene expression was observed in the neck and gravid proglottids via Northern blotting, using cloned cDNA inserts as probes, but the clone was not expressed in any of other tissues. We suggest that this gene may be involved in the apolysis of S. erinacei during normal tissue development and differentiation in cestode parasites.

Cloning and Sequencing of the Mitochondrial Cytochrome c Oxidase Subunit II Gene from Rhabditidae Family Nematode (Rhabditidae과 선충의 CO II 유전자 클로닝 및 염기서열 분석)

  • Lee, Sang Mong;Son, Hong Joo;Kim, Keun Ki;Hong, Chang Oh;Park, Hyean Cheal
    • Journal of Environmental Science International
    • /
    • v.28 no.1
    • /
    • pp.75-84
    • /
    • 2019
  • Cytochrome c oxidase subunit II gene(CO II gene) is subunit of cytochrome oxidase, which is complex IV of mitochondria electron transport system. It has been frequently used in molecular phylogenetic studies because the speed of its DNA variation is faster than that of nucleus. It is especially useful in phylogenetic study of molecular biology in insects. In this study, we cloned and sequenced CO II gene of mitochondria DNA from Rhabditidae family nematode. Our results showed that this gene is comprised of 696 base pairs(bp). In the analysis of similarity of this gene with other known genes of 14 species of nematodes in Rhabditida order, we identified that this gene has high similarity with that of Caenorhabditis briggsae(86.0%) and C. elegans(85.6%) in Rhabditidae family. On the meanwhile, it has very low similarity with that of Angiostrongylus cantonensis(31.8%) in Angiostrongylidae family and Metastrongylus salmi(31.6%) in Metastrongylidae family. Based on the results of this study, we suggest that this nematode is closely related with that of Caenorhabditis genus in Rhabditidae family.