Browse > Article

Lifespan Extending Effects of Helianthus tuberosus Linne in C. elegans  

Lee, Byung Ju (College of Pharmacy, Woosuk University)
Yoon, Young Jin (College of Pharmacy, Woosuk University)
Oh, Jong Woo (College of Pharmacy, Woosuk University)
Park, Zi Won (College of Pharmacy, Woosuk University)
Lee, Hyun Joo (College of Pharmacy, Woosuk University)
Kim, Yong Sung (College of Pharmacy, Woosuk University)
Cha, Dong Seok (College of Pharmacy, Woosuk University)
Kwon, Jin (Department of Prosthetics and Orthotics, Korea National College of Welfare)
Oh, Chan Ho (Department of Food & Biotechnology, Woosuk University)
Jeon, Hoon (College of Pharmacy, Woosuk University)
Publication Information
Korean Journal of Pharmacognosy / v.47, no.3, 2016 , pp. 280-286 More about this Journal
Abstract
Helianthus tuberosus Linne (Compositae) has been widely used as a folk remedy to treat various ailments including fever, bleeding, fracture and contusion. This study was designed to elucidate the lifespan extending activities MeOH extract of the tubers of Helianthus tuberosus Linne (MHT) using Caenorhabditis elegans (C. elegans) model system. In the current study, we found that the lifespan of worms was significantly extended by MHT supplement, dose-dependently. MHT also provided robust protection against various stress environments such as osmotic, thermal and oxidative condition. In addition, elevated antioxidant enzyme activities by MHT resulted in attenuation of intracellular reactive oxygen spices (ROS) levels, suggesting antioxidant capacity of MHT might be associated with longevity properties. Herein, we showed that altered food intake and growth of worms were also involved in the MHT activity. Furthermore, MHT increased body movement in aged worms, indicating possible role for MHT in healthspan.
Keywords
Helianthus tuberosus Linne; Lifespan; Stress tolerance; Caecorhabditis elegans; Healthspan;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Lee, E. Y., Shim, Y. H., Chitwood, D. J., Hwang, S. B., Lee, J. and Paik, Y. K. (2005) Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance. Biochem. Biophys. Res. Commun. 328: 929-936.   DOI
2 Mekheimer, R. A., Sayed, A. A. and Ahmed, E. A. (2012) Novel 1,2,4-triazolo[1,5-a]pyridines and their fused ring systems attenuate oxidative stress and prolong lifespan of Caenorhabiditis elegans. J. Med. Chem. 55: 4169-4177.   DOI
3 Horikawa, M. and Sakamoto, K. (2009) Fatty-acid metabolism is involved in stress-resistance mechanisms of Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 390: 1402-1407.   DOI
4 Ibrahim, H. R., Hoq, M. I. and Aoki, T. (2007) Ovotransferrin possesses SOD-like superoxide anion scavenging activity that is promoted by copper and manganese binding. Int. J. Biol. Macromol. 41: 631-640.   DOI
5 Aebi, H. (1984) Catalase in vitro. Methods Enzymol. 105: 121-126.
6 Leung, M. C., Williams, P. L., Benedetto, A., Au, C., Helmcke, K. J., Aschner, M. and Meyer, J. N. (2008) Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol. Sci. 106: 5-28.   DOI
7 Felix, M. and Braendle, C. (2010) The natural history of Caenorhabditis elegans. Current Biology 20: R965-R969.   DOI
8 Kenyon, C. J. (2010) The genetics of ageing. Nature. 464: 504-512.   DOI
9 Kim, Y., Lee, S., Hwang, J., Kim, E., Park, P. and Jeon, B. (2011) Antioxidant activity and protective effects of extracts from Helianthus tuberosus L. leaves on t-BHP induced oxidative stress in chang cells. J. Korean Soc. Food. Sci. Nutr. 40: 1525-1531.   DOI
10 Chen, F., Long, X., Liu, Z., Shao, H. and Liu, L. (2014) Analysis of phenolic acids of Jerusalem artichoke (Helianthus tuberosus L.) responding to salt-stress by liquid chromatography/ tandem mass spectrometry. The Scientific World Journal doi. 10.1155/2014/ 568043.   DOI
11 Bordone, L. and Guarente, L. (2005) Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat. Rev. Mol. Cell Biol. 6: 298-305.   DOI
12 Curtis, H. J. (1963) Biological mechanisms underlying the aging process. Science 141: 686-694.   DOI
13 Morck, C. and Pilon, M. (2006) C. elegans feeding defective mutants have shorter body lengths and increased autophagy. BMC Dev. Biol. 6: 39.   DOI
14 Bowen, R. L. and Atwood, C. S. (2004) Living and dying for sex. A theory of aging based on the modulation of cell cycle signaling by reproductive hormones. Gerontology 50: 265-290.   DOI
15 Dillin, A., Gottschling, D. E. and Nystrom, T. (2014) The good and the bad of being connected: the integrons of aging. Curr. Opin. Cell Biol. 26: 107-112.   DOI
16 Fulop, T., Larbi, A., Witkowski, J. M., McElhaney, J., Loeb, M., Mitnitski, A. and Pawelec, G. (2010) Aging, frailty and age-related diseases. Biogerontology 11: 547-563.   DOI
17 Olovnikov, A. M. (1996) Telomeres, telomerase, and aging: origin of the theory. Exp. Gerontol. 31: 443-448.   DOI
18 Harman, D. (1992) Free radical theory of aging. Mutation Research/DNAging 275: 257-266.   DOI
19 Knight, J. A. (1995) The process and theories of aging. Ann. Clin. Lab. Sci. 25: 1-12.
20 Weinert, B. T. and Timiras, P. S. (2003) Invited review: theories of aging. J. Appl. Physiol. 95: 1706-1716.   DOI
21 Wu, Z., Smith, J. V., Paramasivam, V., Butko, P., Khan, I., Cypser, J. R. and Luo, Y. (2002) Ginkgo biloba extract EGb 761 increases stress resistance and extends life span of Caenorhabditis elegans. Cell. Mol. Biol. 48: 725-731.
22 Walford, R. L. (1969) The immunologic theory of aging. Immunol. Rev. 2: 171-171.   DOI
23 Beckman, K. B. and Ames, B. N. (1998) The free radical theory of aging matures. Physiol. Rev. 78: 547-581.   DOI
24 Oliveira, B. F., Nogueira-Machado, J. A. and Chaves, M. M. (2010) The role of oxidative stress in the aging process. The Scientific World Journal. 10: 1121-1128.   DOI
25 Ishii, N., Senoo-Matsuda, N., Miyake, K., Yasuda, K., Ishii, T., Hartman, P. S. and Furukawa, S. (2004) Coenzyme Q 10 can prolong C. elegans lifespan by lowering oxidative stress. Mech. Ageing Dev. 125: 41-46.   DOI
26 안덕균 (1998) 원색한국본초도감. 112. 교학사. 서울.
27 Johansson, E., Prade, T., Angelidaki, I., Svensson, S., Newson, W. R., Gunnarsson, I. B. and Hovmalm, H. P. (2015) Economically viable components from Jerusalem artichoke (Helianthus tuberosus L.) in a biorefinery concept. Int. J. Mol. Sci. 16: 8997-9016.   DOI
28 Bach, V., Kidmose, U., Bjorn, G. K. and Edelenbos, M. (2012) Effects of harvest time and variety on sensory quality and chemical composition of Jerusalem artichoke (Helianthus tuberosus) tubers. Food Chem. 133: 82-89.   DOI
29 Kleessen, B., Schwarz, S., Boehm, A., Fuhrmann, H., Richter, A., Henle, T. and Krueger, M. (2007) Jerusalem artichoke and chicory inulin in bakery products affect faecal microbiota of healthy volunteers. Br. J. Nutr. 98: 540-549.   DOI
30 Kim, J., Bae, C. and Cha, Y. (2010) Helianthus tuberosus extract has anti-diabetes effects in HIT-T15 cells. J. Korean Soc. Food Sci. Nutr. 39: 31-35.   DOI
31 Baltacioglu, C. and Esin, A. (2012) Chips production from Jerusalem artichoke (Helianthus tuberosus L.). Food and Nutrition Sciences 3: 1321.   DOI
32 Fiordaliso, M., Kok, N., Desager, J., Goethals, F., Deboyser, D., Roberfroid, M. and Delzenne, N. (1995) Dietary oligofructose lowers triglycerides, phospholipids and cholesterol in serum and very low density lipoproteins of rats. Lipids 30: 163-167.   DOI
33 Ahima, R. S. (2009) Connecting obesity, aging and diabetes. Nat. Med. 15: 996-997.   DOI
34 Minamino, T., Orimo, M., Shimizu, I., Kunieda, T., Yokoyama, M., Ito, T., Nojima, A., Nabetani, A., Oike, Y. and Matsubara, H. (2009) A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat. Med. 15: 1082-1087.   DOI
35 Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71-94.
36 Lithgow, G. J., White, T. M., Melov, S. and Johnson, T. E. (1995) Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc. Natl. Acad. Sci. 92: 7540-7544.   DOI