Browse > Article

Protective Effects of Pyrrosiae Folium on the 2% Glucose-Induced Toxicity in Caenorhabditis elegans  

Kim, Bong Seok (College of Pharmacy, Woosuk University)
Lee, Byung Ju (College of Pharmacy, Woosuk University)
Lee, Hyun Joo (College of Pharmacy, Woosuk University)
An, Soon Young (College of Pharmacy, Woosuk University)
Park, Zi Won (College of Pharmacy, Woosuk University)
Yoon, Seon Hwa (College of Pharmacy, Woosuk University)
Oh, Mi Jin (Korea Food Research Institute)
Kwon, Jin (Department of Prosthetics and Orthotics, Korea National College of Welfare)
Lee, Se Youn (College of Pharmacy, Woosuk University)
Cha, Dong Seok (College of Pharmacy, Woosuk University)
Oh, Chan Ho (Department of Food & Biotechnology, Woosuk University)
Jeon, Hoon (College of Pharmacy, Woosuk University)
Publication Information
Korean Journal of Pharmacognosy / v.48, no.3, 2017 , pp. 179-186 More about this Journal
Abstract
Pyrrosia lingua which belongs to Polypodiaceae has been used as a traditional medicine for the treatment of urinary system inflammation, urination disorder, and bronchitis. However, there are not enough phytochemical and pharmacological studies of P. lingua up to now. Here in this study, the protective effect of MeOH extract of whole plant of Pyrrosia lingua (MPL) against 2% glucose-induced toxicity was investigated using Caenorhabditis elegans (C. elegans) model system. We found that MPL significantly extended the lifespan of wild-type nematode under normal culture condition. MPL also effectively recovered the decreased lifespan caused by 2% glucose-toxicity. In addition, MPL efficiently attenuated the increased glucose concentration inside of nematode. Further studies evaluating diabetes-related factors revealed that MPL reduced both intracellular ROS and lipid accumulation which were up-regulated under 2% glucose supplement condition. Our data also showed that MPL improved the 2% glucose-induced shortened body movement of nematode. Lastly, we carried out genetic studies using several single gene knockout mutants to establish the possible target of MPL. Our results demonstrated that genes such as daf-2 and daf-16 were responsible for the protective activity of MPL against 2% glucose-induced toxicity. These results indicate that MPL exerts protective action against 2% glucose via regulation of insulin/IGF-1 sinaling pathway and FOXO activation.
Keywords
Pyrrosia lingua; Anti-diabetes; Glucose Toxicity; Lifespan;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Schalkwijk, C. G., van Bezu, J., van der Schors, Roel C, Uchida, K., Stehouwer, C. D. and van Hinsbergh, V. W. (2006) Heat-shock protein 27 is a major methylglyoxal-modified protein in endothelial cells. FEBS Lett. 580: 1565-1570.   DOI
2 Schlotterer, A., Kukudov, G., Bozorgmehr, F., Hutter, H., Du, X., Oikonomou, D., Ibrahim, Y., Pfisterer, F., Rabbani, N., Thornalley, P., Sayed, A., Fleming, T., Humpert, P., Schwenger, V., Zeier, M., Hamann, A., Stern, D., Brownlee, M., Bierhaus, A., Nawroth, P. and Morcos, M. (2009) C. elegans as model for the study of high glucose- mediated life span reduction. Diabetes 58: 2450-2456.   DOI
3 Samuel, V. T., Petersen, K. F. and Shulman, G. I. (2010) Lipid-induced insulin resistance: unravelling the mechanism. The Lancet. 375: 2267-2277.   DOI
4 Nomura, T., Horikawa, M., Shimamura, S., Hashimoto, T. and Sakamoto, K. (2010) Fat accumulation in Caenorhabditis elegans is mediated by SREBP homolog SBP-1. Genes & Nutrition 5: 17-27.   DOI
5 Tissenbaum, H. A. (2012) Genetics, life span, health span, and the aging process in Caenorhabditis elegans. J. Gerontol. A Biol. Sci. Med. Sci. 67: 503-510.
6 Yamashita, H., Masuda, K., Kobayashi, T., Ageta, H. and Shiojima, K. (1998) Dammarane triterpenoids from rhizomes of Pyrrosia lingua. Phytochemistry 49: 2461-2466.   DOI
7 Lim, H., Kwon, J. and Jeon, H. (2014) Pyrrosia lingua Reduces Nociception in Mouse. Kor. J. Pharmacogn. 20: 285-289.
8 Kim, M., Park, J. and Lim, S. (2010) Antioxidant activity and cell toxicity of pressurised liquid extracts from 20 selected plant species in Jeju, Korea. Food Chem. 122: 546-552.   DOI
9 Cho, S., Yoo, W., Ahn, S. and Kim, N. (2007) The formation of Sogal concept and classification in Korean Traditional Medicine. Korean J. Orient Med. 13: 1-14.
10 Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71-94.
11 Lithgow, G. J., White, T. M., Melov, S. and Johnson, T. E. (1995) Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc. Natl. Acad. Sci. 92: 7540-7544.   DOI
12 Rezania, A., Bruin, J. E., Xu, J., Narayan, K., Fox, J. K., O'Neil, J. J. and Kieffer, T. J. (2013) Enrichment of human embryonic stem cell?derived NKX6. 1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo. Stem Cells 31: 2432-2442.   DOI
13 Lee, S. J., Murphy, C. T. and Kenyon, C. (2009) Glucose shortens the life span of C. elegans by downregulating DAF-16/FOXO activity and aquaporin gene expression. Cell Metab. 10: 379-391.   DOI
14 Gavin III, J. R., Alberti, K., Davidson, M. B. and DeFronzo, R. A. (1997) Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 20: 1183.   DOI
15 Greer, E. L., Oskoui, P. R., Banko, M. R., Maniar, J. M., Gygi, M. P., Gygi, S. P. and Brunet, A. (2007) The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J. Biol. Chem. 282: 30107-30119.   DOI
16 Mendler, M., Riedinger, C., Schlotterer, A., Volk, N., Fleming, T., Herzig, S., Nawroth, P. P. and Morcos, M. (2017) Reduction in ins-7 gene expression in non-neuronal cells of high glucose exposed Caenorhabditis elegans protects from reactive metabolites, preserves neuronal structure and head motility, and prolongs lifespan. J. Diabetes Complications 31: 304-310.   DOI
17 Murphy, C. T., McCarroll, S. A., Bargmann, C. I., Fraser, A., Kamath, R. S., Ahringer, J., Li, H. and Kenyon, C. (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424: 277-283.   DOI
18 Ha, H., Hwang, I., Park, J. H. and Lee, H. B. (2008) Role of reactive oxygen species in the pathogenesis of diabetic nephropathy. Diabetes Res. Clin. Pract. 82: S42-S45.   DOI
19 Morcos, M., Du, X., Pfisterer, F., Hutter, H., Sayed, A. A., Thornalley, P., Ahmed, N., Baynes, J., Thorpe, S. and Kukudov, G. (2008) Glyoxalase?1 prevents mitochondrial protein modification and enhances lifespan in Caenorhabditis elegans. Aging cell 7: 260-269.   DOI
20 Canivell, S. and Gomis, R. (2014) Diagnosis and classification of autoimmune diabetes mellitus. Autoimmunity Reviews 13: 403-407.   DOI
21 Chiang, J. L., Kirkman, M. S., Laffel, L. M., Peters, A. L. and Type 1 Diabetes Sourcebook Authors. (2014) Type 1 diabetes through the life span: a position statement of the American Diabetes Association. Diabetes Care 37: 2034-2054.   DOI
22 Asano, N., Yamashita, T., Yasuda, K., Ikeda, K., Kizu, H., Kameda, Y., Kato, A., Nash, R. J., Lee, H. S. and Ryu, K. S. (2001) Polyhydroxylated alkaloids isolated from mulberry trees (Morus alba L.) and silkworms (Bombyx mori L.). J. Agric. Food Chem. 49: 4208-4213.   DOI
23 Do, J. C., Jung, K. Y. and Son, K. H. (1992) Notes; Flavonoid Glycosides from the Fronds of Pyrrosia lingua. Kor. J. Pharmacogn. 23: 276-279.