• Title/Summary/Keyword: Cable diagnosis

Search Result 153, Processing Time 0.028 seconds

Diagnosis of Medium Voltage Cables for Nuclear Power Plant

  • Ha, Che-Wung;Lee, Do Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1369-1374
    • /
    • 2014
  • Most accidents of medium-voltage cables installed in nuclear power plants result from the initial defect of internal insulators or the initial failure due to poor construction. However, as the service years of plants increase, the possibility of cable accidents is also rapidly increases. This is primarily caused by electric, mechanical, thermal, and radiation stresses. Recently, much attention is paid to the study of cable diagnoses. To date, partial discharge and Tan${\delta}$ measurements are known as reliable methods to diagnose the aging of medium-voltage cables. High frequency partial discharge measurement techniques have been widely used to diagnose cables in transmission and distribution systems. However, the on-line high frequency partial discharge technique has not been used in the nuclear power plants because of the plant shutdown risk, degraded measurement sensitivity, and application problems. In this paper, the partial discharge measurement with a portable device was tried to evaluate the integrity of the 4.16kV and 13.8kV cable lines. The test results show that the high detection sensitivity can be achieved by the high frequency partial discharge technique. The present technique is highly attractive to diagnose medium voltage cables in nuclear power plants.

Damage Detection in Cable-Stayed Bridges Using Vibration Modes (진동모드를 이용한 사장교의 손상 검색)

  • Kong, Min-Sik;Ka, Hoon;Son, Seok-Ho;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.113-123
    • /
    • 2006
  • As Cable-stayed bridges were constructed to the long span, they have become bigger and had weaknesses to vibration induced by earthquake, wind and vehicle loads. Structural damages induced by these loads affect the characteristic of vibration modes of structure. Damage detection of cable-stayed bridges by using existing safety diagnosis is difficult to detect the characteristic change of overall structural action. Also it requires very much time and cost. So in this study, the investigation of characteristic change of structural action and the detection of structural damages is analyzed by using characteristic properties of vibration mode before and after structural damage.

Load current and Temperature measurement system for Measuring the Degradation of Power cable (전력케이블의 열화측정을 위한 부하전류 및 온도측정 시스템)

  • Park, Yong-Kyu;Cho, Young-Seek;Lee, Kwan-Woo;Um, Kee-Hong;Park, Dae-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.2
    • /
    • pp.69-74
    • /
    • 2015
  • Recently, there has been a surge in interest in equipment diagnosis and monitoring technology from the perspective of providing quality electricity in terms of reliability and safety. In order to meet the electrical demands of consumers, reliability of power supply needs to be maintained. For this purpose, a monitoring system for power cable is very important. Since real-time measuring equipment has many advantages, it is highly applicable. By measuring the load current and the surface temperature of power cables, we have monitored and identified the deterioration phenomena of power cables in operation. Since direct measurement of the cable conductor temperature is not easy, we have measured the surface temperature instead, and converted that temperature to obtain the conductor temperature of the cables. In addition, we have designed a system to detect the deterioration processes of the power cables in operation.

A Study on HVDC Underwater Cable Monitoring Technology Based on Distributed Fiber Optic Acoustic Sensors (분포형 광섬유 음향 센서 기반 HVDC 해저케이블 모니터링 기술 연구)

  • Youngkuk Choi;Hyoyoung Jung;Huioon Kim;Myoung Jin Kim;Hee-Woon Kang;Young Ho Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.199-206
    • /
    • 2023
  • This study presents a novel monitoring technique for underwater high-voltage direct current (HVDC) cables based on the Distributed Acoustic Sensor (DAS). The proposed technique utilizes vibration and acoustic signals generated on HVDC cables to monitor their condition and detect events such as earthquakes, shipments, tidal currents, and construction activities. To implement the monitoring system, a DAS based on phase-sensitive optical time-domain reflectometry (Φ-OTDR) system was designed, fabricated, and validated for performance. For the HVDC cable monitoring experiments, a testbed was constructed on land, mimicking the cable burial method and protective equipment used underwater. Defined various scenarios that could cause cable damage and conducted experiments accordingly. The developed DAS system achieved a maximum measurement distance of 50 km, a distance measurement interval of 2 m, and a measurement repetition rate of 1 kHz. Extensive experiments conducted on HVDC cables and protective facilities demonstrated the practical potential of the DAS system for monitoring underwater and underground areas.

Analysis of breakdown on the Main-Transfomer tertiary cable (주변압기 3차케이블 고장원인분석사례)

  • Park, Min-Goo;Jin, Seung-Whan;Won, Gyeong-Bae;Cho, Chong-Eun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1488-1489
    • /
    • 2015
  • 본 논문에서는 154kV 주변압기 3차측에서 사용하고 있는 6~10kV급 전력케이블인 TFR-CV $400mm^2$의 절연파괴고장에 대한 원인을 분석하였다. 대상 케이블은 2010년 9월에 가압하여 약 4.4년 운전 후 발생하였으며 차폐부 제거 후 열수축튜브를 시공한 사례이다. 위와 같이 차폐부를 제거한 케이블의 고장분석사례를 소개하고 고장 재발방지방안을 제안하고자 한다. 이 논문은 향후 변압기 신 증설 및 교체, 운영에 활용할 수 있을 것으로 사료된다.

  • PDF

Development of Magnetic Sensor for Live Line Detector of the Underground Cable (지중케이블 활선검출기를 위한 자장 센서 개발)

  • Kim, Ki-Joon;Oh, Yong-Cheul;Lee, Kyeong-Seob;Jung, Han-Seok;Kim, Tag-Yong;Choi, Mi-Hui;Soung, Min-Yeong;Shin, Cheol-Gi;Kim, Jin-Sa
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.2
    • /
    • pp.166-171
    • /
    • 2011
  • We use the electrical energy and it is essential energy in modern life, but we lay cable underground due to the issue for environment and safety. Safety for worker is still insufficient for the development of safety equipment and related research has been focused on the cable lifetime diagnosis at underground cable work. I have to develop live line detector around the magnetic field were investigated at underground cable. In this paper, we were investigated by variation of coil turns and load due to detection of magnetic field at lines around. And detected value of developing products compared with measured value of milli-gauss meter. As a result, the value of the number of coil turns was found to be proportional to the measured value. But turn-numbers increase showed that the weak noise. I could be confirmed that sensor showed the optimum value from 4,000 to 5,0000.

The Consideration of Electrical Characteristics and Breakdown Lifetime in 22.9[kV] Underground Distribution Power Cables (22.9[kV] 지중배전용 전력케이블의 전기적 특성과 파괴수명 고찰)

  • Kim, Chung-Bae;Hong, Gyeong-Jin;Im, Jang-Seop;Jeong, U-Seong;Kim, Sang-Jun;Kim, Tae-Seong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.9
    • /
    • pp.628-633
    • /
    • 1999
  • Degradation diagnosis of XLPE insulated URD cables was accomplished through out new method, which was to be analyzed by non-electrical experiments and synthesized by degradation points. To supplement this method, It was also carried out using several electrical analyses. Tan$\delta$ had commonly a different tendency by means oftemperature and frequency and also appeared higher at the outer part rather than innerpart of insulator. PD-q increased generally in proportion to the applied voltage andshowed regular patterns in relation to the thickness of insulator. Breakdown voltageswere measured and breakdown lifetimes were predicted appling for Weibull distribution function. As a result, breakdown lifetime in failure cables was shorter up to$\fraction one-third$ times than that in general cables. It was very available to estimate cable degradation using above method, but it needs further study on XLPE insulated URD cables in order to improve reliability.

  • PDF

A Study on the New Partial Discharge Pattern Analysis System used by PA Map (Pulse Analysis Map) (PA Map(Pulse Analysis Map)을 이용한 새로운 부분방전 패턴인식에 관한 연구)

  • Kim, Ji-Hong;Kim, Jeung-Tae;Kim, Jin-Gi;Koo, Ja-Yoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1092-1098
    • /
    • 2007
  • Since one decade, the detection of HFPD (High frequency Partial Discharge) has been proposed as one of the effective method for the diagnosis of the power component under service in power grids. As a tool for HFPD detection, Metal Foil sensor based on the embedded technology has been commercialized for mainly power cable due to its advantages. Recently, for the on-site noise discrimination, several PA (Pulse analysis) methods have been reported and the related software, such as Neural Network and Fuzzy, have been proposed to separate the PD (Partial Discharge) signals from the noises since their wave shapes are completely different from each other. On the other hand, the relevant fundamental investigation has not yet clearly made while it is reported that the effectiveness of the current methods based on PA is dependant on the types of sensors. Moreover, regarding the identification of the vital defects introducible into the Power Cable, the direct identification of the nature of defects from the PD signals through Metal Foil coupler has not yet been realized. As a trial for solving above shortcomings, different types of software have been proposed and employed without any convincing probability of identification. In this regards, our novel algorithm 'PA Map' based on the pulse analysis is suggested to identify directly the defects inside the power cable from the HFPD signals which is output of the HFCT and metal foil sensors. This method enables to discriminate the noise and then to make the data analysis related to the PD signals. For the purpose, the HFPD detection and PA (Pulse Analysis) system have been developed and then the effect of noise discrimination has been investigated by use of the artificial defects using real scale mockup. Throughout these works, our system is proved to be capable of separating the small void discharges among the very large noises such as big air corona and ground floating discharges at the on-site as well as of identifying the concerned defects.

A Study on Discharge Statistics Quantities for Deterioration Diagnosis of Branch-type Tree (가지형 트리의 열화진단을 위한 방전통계량에 관한 연구)

  • Shin, S.K.;Kim, K.M.;Kim, T.Y.;Lee, D.J.;Park, C.O.;Kim, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2345-2348
    • /
    • 1999
  • Existing $\psi$-AEA-t (phase-AEA-time) characteristic in polymer materials for power cable is good in general deterioration characteristic according to time variation, but it is difficult to clearly distinguish from deterioration state and diagnosis of deterioration is not enough to some extent. This paper is interpreted AE discharge statistics quantities measuring phase-amplitude variation of acoustic emission characteristic obtained from treeing breakdown experiment. Besides it can know useful discharge statistics quantities (AE average inception phase/amplitude, AE average maximum phase/amplitude) about so many for diagnosis of treeing deterioration.

  • PDF

Development of Algorithm for Fault Diagnosis (고장진단 알고리즘 개발)

  • Seo, Gyu-Seok;Ok, Chi-Yun;Baek, Young-Sik;Kim, Jung-Nyun
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.248-250
    • /
    • 2003
  • Recently, electric power system's situation grows gradually so Fault Diagnosis is being complicated and is felt difficult. And ability that operator who is using electric power system must do correct judgment of power system state, and can cope at fault of power system state is required. Therefore, large size power system is divided into predefined minimum module, and define each module accident type. We use and compare defined accident type, we can know easily accident that happen forward. Therefore, large size power system using module that is defined to each section common accident type search in this paper. Therefore, large size power system using module that is defined to each section, we search for common accident type. And when accident in electric power system happens, I wish to explain about process that can do fault diagnosis in more easy and fast time, because using accident type that it is verified in front.

  • PDF