• Title/Summary/Keyword: Cable damage

Search Result 210, Processing Time 0.032 seconds

A Fundamental Study of VIV Fatigue Analysis Procedure for Dynamic Power Cables Subjected to Severely Sheared Currents (강한 전단 해류 환경에서 동적 전력케이블의 VIV 피로해석 절차에 관한 기초 연구)

  • Chunsik Shim;Min Suk Kim;Chulmin Kim;Yuho Rho;Jeabok Lee;Kwangsu Chea;Kangho Kim;Daseul Jeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.5
    • /
    • pp.375-387
    • /
    • 2023
  • The subsea power cables are increasingly important for harvesting renewable energies as we develop offshore wind farms located at a long distance from shore. Particularly, the continuous flexural motion of inter-array dynamic power cable of floating offshore wind turbine causes tremendous fatigue damages on the cable. As the subsea power cable consists of the helical structures with various components unlike a mooring line and a steel pipe riser, the fatigue analysis of the cables should be performed using special procedures that consider stick/slip phenomenon. This phenomenon occurs between inner helically wound components when they are tensioned or compressed by environmental loads and the floater motions. In particular, Vortex-induced vibration (VIV) can be generated by currents and have significant impacts on the fatigue life of the cable. In this study, the procedure for VIV fatigue analysis of the dynamic power cable has been established. Additionally, the respective roles of programs employed and required inputs and outputs are explained in detail. Demonstrations of case studies are provided under severely sheared currents to investigate the influences on amplitude variations of dynamic power cables caused by the excitation of high mode numbers. Finally, sensitivity studies have been performed to compare dynamic cable design parameters, specifically, structural damping ratio, higher order harmonics, and lift coefficients tables. In the future, one of the fundamental assumptions to assess the VIV response will be examined in detail, namely a narrow-banded Gaussian process derived from the VIV amplitudes. Although this approach is consistent with current industry standards, the level of consistency and the potential errors between the Gaussian process and the fatigue damage generated from deterministic time-domain results are to be confirmed to verify VIV fatigue analysis procedure for slender marine structures.

CMOS Logic Design and Fabrication for Analyzing the Effect of Transient Radiation Damage (과도 방사선 피해 영향 분석을 위한 CMOS 논리 소자 설계 및 제작)

  • Jeong, Sang-Hun;Lee, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.880-883
    • /
    • 2012
  • In this paper, CMOS logic device, the INVERTER, NAND, NOR were designed and fabricated using 0.18um CMOS process for analyzing the effect of transient radiation damage. Fabricated logic devices were measured by applying a 1kHz input at 1.8V supply. As a result, the current consumption of less than 70uA and Rising time, Falling time was within a 4us. Experimental results transmission delays occurred when using a 50M cable for pulse radiation experiments.

  • PDF

Field Application of AC High Voltage Test after Installation for EHV XLPE Power Cables (초고압 XLPE 전력케이블에 대한 설치후 교류내전압시험 현장적용)

  • Kim, Y.;Kwon, B.I.;Seong, J.K.;Han, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1768-1770
    • /
    • 2001
  • EHV power cables can take any damage during shipping, transportation, handling, storage and installation. As the damage influences a reliability of the power cable system in the short and long periods, field tests have been required, for installers, to confirm the reliability of an installed system and, for utilities, to make sure the compatibility of an installed system. Of field tests, a HV withstand test for the cable insulation has been performed to check the soundness of the insulation. For EHV XLPE power cables, the test has been done by applying a specified d.c voltage till lately. But as some problems with the d.c test is emphasized and the equipment for the a.c test is improved, the a.c test is considered positively as an after-installation test. This paper describes the recent trends of the a and its recent application in the field.

  • PDF

An Assessment on Effect of Facility and Electrical Safety During the Flooding of the Photovoltaic Power System (태양광 발전설비의 침수 시 설비영향 및 전기적 안전성 평가)

  • Park, Chan-Eom;Jung, Jin-Soo;Han, Un-Ki;Lim, Hyun-Sung;Song, Young-Sang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.38-44
    • /
    • 2014
  • The photovoltaic power system is performing power generation by being installed in outdoors. Therefore it has the characteristics affected by environmental factors. In particular, if the solar power generation facility connected to the grid, the power can be generated continuously in a state of being secured operating voltage of the inverter and solar irradiation. In that case, if an abnormal situation such as flooding or heavy rains has occur, the possibility of electric shock or damage of facilities due to current leakage or a floating matters is present. In this paper, we performed electrical safety assessment about the connection part, junction box and cable of the solar module when the solar power system was flooded. we also assessed whether or not the leakage current is occurred in case of the cable was damaged. As a result, in case of the leakage current is large, we can be known that it is the risk of electric shock as well as cause of inverter damage.

Review, Assessment, and Learning Lesson on How to Design a Spectroelectrochemical Experiment for the Molten Salt System

  • Killinger, Dimitris;Phongikaroon, Supathorn
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.2
    • /
    • pp.209-229
    • /
    • 2022
  • This work provided a review of three techniques-(1) spectrochemical, (2) electrochemical, and (3) spectroelectrochemical-for molten salt medias. A spectroelectrochemical system was designed by utilizing this information. Here, we designed a spectroelectrochemical cell (SEC) and calibrated temperature controllers, and performed initial tests to explore the system's capability limit. There were several issues and a redesign of the cell was accomplished. The modification of the design allowed us to assemble, align the system with the light sources, and successfully transferred the setup inside a controlled environment. A preliminary run was executed to obtain transmission and absorption background of NaCl-CaCl2 salt at 600℃. It shows that the quartz cuvette has high transmittance effects across all wavelengths and there were lower transmittance effects at the lower wavelength in the molten salt media. Despite a successful initial run, the quartz vessel was mated to the inner cavity of the SEC body. Moreover, there was shearing in the patch cord which resulted in damage to the fiber optic cable, deterioration of the SEC, corrosion in the connection of the cell body, and fiber optic damage. The next generation of the SEC should attach a high temperature fiber optic patch cords without introducing internal mechanical stress to the patch cord body. In addition, MACOR should be used as the cell body materials to prevent corrosion of the surface and avoid the mating issue and a use of an adapter from a manufacturer that combines the free beam to a fiber optic cable should be incorporated in the future design.

Cable-supported Bridge Safety Inspection Blind Spot Elimination Technology using Drones (드론을 활용한 케이블지지교량 안전점검 사각지대 해소 기술)

  • Sungjin Lee;Bongchul Joo;Jungho Kim
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.4
    • /
    • pp.31-38
    • /
    • 2022
  • In the case of special bridges whose superstructure is supported by cables, there are many blind spots that are difficult to access without special equipment and personnel. As a result, there are difficulties in the safety inspection of special bridges. The purpose of this study is to review the inspection blind spots of cable-supported bridges such as cable-stayed bridges and suspension bridges, and to study ways to eliminate blind spots using drones. To this end, the cables, stiffened girder, and pylons of the cable-stayed bridge located in the sea were inspected using drones. Through this study, it was confirmed that external safety inspection of special bridges that are difficult for inspectors to access is possible using drones. In particular, drone inspection to check the external condition and damage of the pylon, which is a blind spot for inspection of special bridges, is a very effective safety inspection method.

Damage Evaluation of Flexible Concrete Mattress Considering Steel Reinforcement Modeling and Collision Angle of Anchor (철근의 영향과 앵커 충돌각도를 고려한 유연콘크리트 매트리스의 손상평가)

  • Ryu, Yeon-Sun;Cho, Hyun-Man;Kim, Seo-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.109-116
    • /
    • 2016
  • A flexible concrete mattress (FCM) is a structural system for protecting submarine power or communication cables under various load types. To evaluate its of protection performance, a numerical analysis of an FCM under an anchor collision was performed. The explicit dynamics of the finite element analysis program ANSYS were used for the collision analysis. The influences of the steel reinforcement modeling and collision angle of the anchor on the collision behavior of the FCM were estimated. The FCM damage was evaluated based on the results of the numerical analysis considering the numerical modeling and collision environment.

Wireless Measurement Technology for Power Plant Performance Diagnosis (발전설비의 성능진단 적용 무선계측 기술)

  • Kim, Ui-Hwan;Lee, Eung-Gon;Hong, Eun-Gi
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.1
    • /
    • pp.9-16
    • /
    • 2017
  • The performance test is conducted for the purpose of determining the accurate thermal performance of the power generation facility or deriving the factors of thermal efficiency degradation. Compared to the acquisition method of power plant thermal performance test data by compensating cable or transmission cable, performance test using wireless instrument can acquire digital data in order to shorten the period due to installation and demolition of instrument and enhance safety of workers and relatively accurate data can be acquired thereby improving work efficiency. Wireless instruments have already been introduced to the market a long time ago, and some of them are used in industry such as petrochemical industry. However, there is no example which has been conducted for performance test of power generation facilities. In order to apply power generation facilities, a reliable system capable of acquiring performance data smoothly without affecting the control system is required. The wireless measurement system can eliminate the measurement defects and errors such as the damage due to the movement of the connecting cable, the extension due to the extension of the shield wire, the contact failure at the contact point between the measuring sensor and the connecting wire, This method has the advantage of collecting relatively accurate performance test data.

Recent R&D activities on structural health monitoring in Korea

  • Kim, Jeong-Tae;Sim, Sung-Han;Cho, Soojin;Yun, Chung-Bang;Min, Jiyoung
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.1
    • /
    • pp.91-114
    • /
    • 2016
  • In this paper, recent research trends and activities on structural health monitoring (SHM) of civil infrastructure in Korea are reviewed. Recently, there has been increasing need for adopting smart sensing technologies to SHM, so this review focuses on smart sensing, monitoring, and assessment for civil infrastructure. Firstly, the research activities on smart sensor technology is reviewed including optical fiber sensors, piezoelectric sensors, wireless smart sensors, and vision-based sensing system. Then, a brief overview is given to the recent advances in smart monitoring and assessment techniques such as vibration-based global monitoring techniques, local monitoring with piezoelectric materials, decentralized monitoring techniques for wireless sensors, wireless power supply and energy harvest. Finally, recent joint SHM activities on several test beds in Korea are discussed to share the up-to-date information and to promote the smart sensors and monitoring technologies for applications to civil infrastructure. It includes a Korea-US joint research on test bridges of the Korea Expressway Corporation (KEC), a Korea-US-Japan joint research on Jindo cable-stayed bridge, and a comparative study for cable tension measurement techniques on Hwamyung cable-stayed bridge, and a campaign test for displacement measurement techniques on Sorok suspension bridge.

Two Dimensional Laying Simulation of Subsea Cables (유한차분법에 의한 해저케이블의 2차원 포설 시뮬레이션)

  • 박한일;김동혁;김명준;진근하
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.1
    • /
    • pp.35-42
    • /
    • 1997
  • Subsea cable systems have a large information transmission capacity and play an important role in domestic and global information networks. However since the cables are under harsh marine environment, they are exposed to various hazards with high potential risks of damage resulting in serious economic loss. In this research a computer simulation program based on the finite difference algorithm was developed. The program is able to simulate two dimensional dynamic behaviour of a submarine cable during its laying. In order to verify the numerical results, they are compared to analytical results, showing a good agreement between the two results.

  • PDF